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GEOMETRIC SIMILARITY IN ALLOMETRIC GROWTH:
A CONTRIBUTION TO THE PROBLEM OF SCALING IN THE
EVOLUTION OF SIZE

STEPHEN JAY GoULD

Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138

I. INTRODUCTION : OF BRAINS AND BODIES

‘‘Since men have intelligence,’’ said Anthony (1938, p. 18), ‘‘it is natural
that they should try to assess the degree of their superiority over other
animals in this respect.”’? It was apparent to Cuvier that neither absolute
nor relative brain weight would measure this advantage—lest a whale on
the one hand or a shrew on the other be regarded as the paragon of intellect.
Brain weight is correlated with body weight, and the relation is not linear;
small animals have relatively larger brains. Yet, if plots of brain versus
body had the same slope for all mammals, then the superiority of man could
be measured by his large y-intercept (and the heaviest brain for his body
weight that it implied ; see fig. 1). Thus, there arose the idea that the brain
might be partitioned into two factors, one dependent upon size and one
independent of it—and that the slope of a proper growth equation would
represent the first, its y-intercept the second. Manouvrier (1885) tried a
linear model, with little success. In 1891, Snell first fit the power funection

y = bz, (1)
which, in its logarithmic transformation,
log y = a(log z) + log b, (2)

plots as a straight line with slope a and y-intercept of log b (with y =
brain weight and z = body weight). Since Snell related brain weight to
metabolism and M. Rubner had equated metabolism to body surface, Snell
expected all curves of brain weight versus body weight to plot with a slope
of 2/3. The ratio of y-intercepts for any two lines will then equal the ratio
of brain weights at any body weight; therefore, Snell argued, the coefficient
b represents the part of brain weight that is independent of body weight.
And the higher the value of b, the more ‘‘cephalized’’ the animal. Snell
named b the ‘‘psychic factor’’ and a the ‘‘somatic exponent,”’ believing
that he had separated the two components of brain weight.

Eugen Dubois, discoverer of Homo erectus in Java, extended Snell’s
work. He retained the idea of constant slope but reduced Snell’s value

1 Thig and all other translations from French and German sources are my own.
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F1e¢. 1.—Dubois’s (1897) method for measuring ‘¢degree of eephalization.’’
Abscissa represents body weight in grams plotted on a logarithmic scale; ordi-
nate is brain weight in grams, also on a logarithmic scale. Each point repre-
sents a single adult or the mean of several adult animals. A line of slope 0.56
is passed through each point. At any common z-value (dotted line of figure at
arbitrary =), relative y-values measure degree of cephalization. Since relative
y-values are constant when all lines have the same slope, any z-value can be
used; therefore, the y-intercept of this log-log plot (# =1, not shown on this
plot) measures the ‘¢ degree of cephalization.’’ Data from Dubois (1897).

from 2/3 to .56, claiming that the surfaces most influencing brain weight
belonged to sensory organs and that eyes (the most important of these)
decreased in size relative to body weight far more rapidly than the general
body surface (1897, p. 21). He retained Snell’s .66 for bats with poor sight
and for certain series of small mammals, apparently realizing (as indeed
is true) that the rate of relative decrease in eye size is not constant but
rather increases greatly in larger mammals. The edifice of his next 30 years
was built on the constancy of .56 ; that conclusion was based on seven pairs
of points for seven pairs of ‘‘related’’ species that differed greatly in size
(1897, p. 21). The conclusion was self-perpetuating, since Dubois then cal-
culated his y-intercepts from single points, assuming the constancy of .56
a priori.

Dubois (1922, 1928) built his famous theory of brain evolution on a belief
that evolutionary increase in b occurred in steps of a geometric progression
with base 2. Thus, he reasoned, the brain evolves by a doubling of neurons
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early in embryology; (the change is reflected only in the increase of size-
independent b; the slope remains constant). Brummelkamp (1940, p. 55),
a disciple of Dubois, proclaimed: ‘‘This leapwise increase in nuclear vol-
ume of cortex is the essential moment in the evolution of the vertebrates.. ..
This nucleus mass may be considered as the point of application by which
Nature drives the vertebrate to still higher levels of evolution.’’ Thus, the
coefficient of the power function became the basis of a theory, wondrous
in its implications though fragile in its foundations, that depended on the
notion that b measured a size-independent component of brain weight.

The weaknesses should have been evident from the start. Dubois’s inter-
pretation of b requires absolute constancy of slope; yet he had recognized
exceptions to » = .56 in his original paper. Dubois’s curves were based on
adults of related species. Lapicque (1907, 1907b) plotted adults within
species and claimed a ‘‘universal’’ value—*‘la loi intérieure de 1’espéce’’—
of r = .25. This constancy, of course, was as fallacious as Dubois’s, but at
least it cast doubt on the generality of .56. After numerous criticisms
(Anthony 1938; Sholl 1948; Wirz 1950; Jerison 1955; Pirlot 1969), Du-
bois’s theory has passed to oblivion. The reasons are many, but most prom-
inent by far is the fact that interspecific slopes are not constant for all
groups. The values hover about .66—and I cannot doubt that there must
be some relationship to surfaces in this—but they vary greatly. Intra-
specific values are lower (limited growth of nondividing neurons and inde-
pendent variation in body weight due to nutrition), but they vary just
as much.

Snell’s power function was extended by Huxley and Teissier in the 1920s
and 1930s to the wide range of phenomena that encompass differential or
allometric growth. The interpretation of a as the ratio of specific growth
rates of y/x has been accepted by all, but the meaning of the coefficient b
has generated a large and inconclusive literature (reviewed in White and
Gould 1965). Moreover, its interpretation as a size-independent factor has
persisted with surprising popularity and stubbornness, even though its
warrant had disappeared with the collapse of Dubois’s theory.

Interpretation of b as a size-independent factor can be dismissed most
easily for regressions that differ in a. This view requires that b and o be
independent of one another, but the two parameters are related for mathe-
matical reasons (White and Gould 1965; Mayrat 1966). Yet size indepen-
dence as a general property of b has been maintained by Oboussier and
Schliemann (1967, p. 464) and Zehner (1967, p. 3).

For those numerous cases in which we compare regressions with the same
a, the interpretation of b as size independent does not, at first sight, seem
incorrect. For in two regressions of equal o, the ratio of b-values equals
the ratio of y-values af any z (fig. 1). This interpretation has been main-
tained recently by Rohrs (1958, p. 288), Frick (1961, p. 140), Stork (1968,
p. 77), and by Klemmt (1960, p. 273), who says of b: ‘‘It encompasses the
totality of all factors that influence organ weight independently of the
body weight.”” Indeed, the relative difference in shape between any two
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curves (fig. 1) appears at the smallest size common to both regressions and
remains constant for all later sizes. But the fallacy is that these are not
ontogenetic curves: each represents the static allometry of a series of adults
(see Cock 1966 on types of data). There is no reason whatever for thinking
that such a static curve should coincide with the ontogenetic curve of a
large member of the series. Is there any other meaning that could be given
to differences in b for static curves of equal a? Figure 2 shows such an
interpretation. The hypothetical eurve at Ty is drawn through three co-
linear points representing average adults of related species. Suppose that
each animal then evolved to the same multiple of its original size at time
T, and that, in so doing, its brain increased in constant proportion to body
weight (i.e., with o =1 for phylogenetic allometry in each of the three
lines). The curve for time T would still have the same slope as Ty, but its
b-value would be higher—and that higher value would be a result of in-
creasing size in each lineage.

In theory, then, shifts in b may reflect size differences between regres-
sions. But does this interpretation ever hold in fact? The answer is that
it does, and it must. Bauchot and Stephan (1964) studied intra- and inter-
specific brain-body relations in insectivores. Static curves for adults of a
single species average .23 for a; a is .64 for the interspecific regression of
mean adults. If o is set at .23 for each intraspecific curve and if a line of
that slope is drawn through the joint mean of each species, the resulting
set of b-values are, with one exception, correlated with the mean size of
the species (fig. 3). And this must be so if the joint means are to lie on
an interspecific regression of a = .64.

Log Brain Weight

Log Body Weight
F16. 2.—A shift of regression lines on logarithmic scales (change of inter-
cept; no change of slope) produced by size increase of adults rather than by
reorganization of proportions at the outset of allometric growth. See text for
details.
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F16. 3.—Intra- and interspecific brain-body ecurves for insectivores from
Madagascar (from Bauchot and Stephan 1964), logarithmie scales. Intraspecifie
curves are set at their average a-value of 0.23 (points represent the joint means) ;
o is 0.64 for the interspecific curve. For this situation to obtain (inter o > intra
o), b-values must generally increase for larger animals; b will be a measure of
size, not of ‘¢‘level of cephalization.’’ 1, Suncus murinus; 2, Nesogale talazaci;
38, Hemicentetes semispinosus; £, Setifer setosus; 6, Tenrec ecaudatus. Weight
given in grams.

Allometric equations apply only to the range of data that they fit; yet
they are usually written as if they applied to an infinite range of z. We
are so used to writing them in this general form that we have neglected to
compare the size ranges of the several lines in a series and have thereby
missed the significance of many shifts in b—we have not understood that
they are size required. I recognized this by accident. In scanning all series
of constant o that I knew in the literature, I noticed the consistent pattern
depicted in figure 4: when o < 1, higher b-values are associated with larger
sizes; when o > 1, higher b-values characterize smaller sizes. Values of a
that differ strongly from 1 are almost always size limiting (Gould 1966a,
1966b) because extrapolation to a much-widened size range produces such
drastic and rapid changes in shape. If the ontogenetic or static o for each of
several related species is constrained to be nearly constant and much less
than 1, if the species differ in adult size, and if each must display the same
range of proportions and attain the same final shape, then higher b-values
for successively larger species must characterize the series. Likewise, among
several ontogenetic or static lines of constant o > 1, larger species must
have lower b-values to develop the same range of proportions and final shape
(fig. 4; remember that lines of o = 1 join points of constant shape). I can
imagine no other explanation for this consistent pattern than that larger
species must often attain ranges in shape similar to those of smaller relatives.
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F1a. 4—The correlation of b and size in systems of constant o. In each case,
the three regressions represent changes in size with no change of shape (i.e.,
dotted line a of slope oo =1 joins the smallest animals of each regression, line
b the joint means, and line ¢ the largest animals; on log-log plots, lines of
o =1 join points of equal shape). Abscissa and ordinate are log body weight
and log brain weight, respectively, as before. Case 1, if a (solid lines) is equal
and less than 1 for all regressions, then larger animals must lie on regressions
with higher b-values (bs>b:> b1) if constant shape is maintained. Case 2,
if o is equal and greater than 1 for all regressions (solid lines 1, 2, and 3),
then smaller animals must lie on regressions with higher b-values (bs > b2 > b1).

Kurtén (1954) first argued, for a specific case, that a shift in allometry
lines had occurred to preserve shape at larger sizes. Meunier (1959,
1959b), the only other author who has recognized the size dependence of
such shifts, refers to them as ‘‘ Transpositionsallometrie’’—‘a size depen-
dency of higher ordering’’ (1959b, p. 346). ‘‘Transposition,’”’ he states
(19590, p. 353-354), “‘is the ordering system of size ranges in which intra-
specific allometries lead to functional [lebensfihigen] forms.’’ Yet, despite
this insight, Meunier does not realize that b measures his size dependency,
for he is still tied to the view that it ‘‘encompasses all influences that do
not depend upon size’’ (1959b, p. 351).

Misinterpretation of b extends far beyond the false idea of size inde-
pendence; in fact, there are national schools of error. Size independence is
stressed by German authors; English writers have generally followed
Huxley’s view that b ‘‘has no biological or general significance’’ (1950, p.
465 ; see also his excellent book [1932]). Since b is the value of y at z =1,
and since £ — 1 often represents a distant extrapolation from the size range
of data, Needham (1950, p. 553), Schadé (1959, p. 162), Mitra (1958, p.
999), and others have pronounced it devoid of biological meaning. But
z = 1 should be seen as a convenience for calculation; b is part of a rela-
tion that is valid in a certain size interval; if the y-value for an extrapo-
lated £ =1 lies in the realm of biological absurdity, a claim for b’s
importance is not upset thereby.

II. DEVELOPMENT OF A MEASURE OF SIZE DIFFERENCE FOR CONSTANT SHAPE

I shall now show that b can be manipulated to yield a measure of the
relative difference in size at which one regression has the same shape as
another, that is, of how much larger an animal on one regression must be
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than that on another to have the same y/x ratio in any bivariate relation
of constant a for both curves. Thus, b is a scale factor; it shifts as the
arbitrary unit of measurement changes and when the size of objects, but
not their range of shapes, is altered. In other words, whenever we modify
size and only size, b and only b changes. Thus, this measure tells us whether
a change in b represents a shift of scale alone. If the actual difference in
the size of animals on two regressions equals this measure of the difference
in size for constant shape, then a change in scale alone has produced the
shift in b, for the animals on the two curves are constituted in geometric
similarity. The following argument is a simplified version of that presented
in White and Gould (1965).

Consider two regressions of constant a4 1. (When a =1, all points on
any one curve and no corresponding points of two curves have the same
shape, since y/x is a constant for each eurve.) For any point on regression
2, there is one and only one point of the same shape on regression 1 such
that:

vi_vs

3
P, (3)
and
hn (4)
Y2 X2
At these points, the two regression equations are
Y= bl 1% and =
Yo = b2 Z2%. (0)
Therefore,
/e (6)
by Ya/w2"
and from (4)
b m/et (7
by x2/x”
or
bl <x1> 1—a
S 8
> o (8)

Now z;/z, is the desired quantity—the relative difference in size at which
shape on the two regressions is the same. Let us call this quantity s. Finally,

< b 1) 1/1—a

s —= | — 9

52 )
Since a is constant, s, the size difference for constant shape, depends upon
the ratio of b-values.

In the next two sections, I shall present two types of examples in which
the calculation of s from a ratio of b-values can help to illuminate a prob-
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lem. In the first type, we make no hypothesis about geometric similarity of
animals on two regressions, but merely maintain that s provides a useful
comparison of two curves. I shall argue that s is sometimes more appro-
priate or enlightening than the usual comparison of b-values. In the second
type, I am testing the hypothesis that a shift in b has occurred in order
to maintain geometric similarity between animals in different size ranges.

III. THE SIMILARITY CRITERION S AS A FIGURE FOR THE USEFUL COMPARISON OF
TWO REGRESSIONS

a) Ewvolution of the Brain

Jerison (1961) plotted static curves for the brain-body relation in adult
Eocene, Oligocene, and Recent mammals. He obtained the following regres-
sions :

y = .0262-857 for Eocene mammals,
y = .0552-955 for Oligocene mammals, and (10)
y = .1152-%%¢ for Recent mammals.

The standard comparison for, say, Eocene and Recent mammals would be
made by dividing the two b-values and stating that the brain of an average
Recent mammal is 4.4 times as heavy as that of an average Eocene mammal
at any body weight. But the similarity criterion, s, provides another com-
parison. From (10)

115 Y 1—.66)
— — 2.94
s = <.026) = (4.42)2% — 64. (11)
Thus, an average Recent mammal is 64 times as heavy as an average
Eocene mammal of the same brain-weight/body-weight ratio. Since weight
scales as %, the average Recent mammal is four times as long as the average
Eocene mammal with the same relative brain weight.

Both of these comparisons are ‘‘correct,’’ but which is more enlightening ¢
This depends on how the mammalian brain increased in phylogeny, a ques-
tion that cannot be answered from these static curves. If Dubois was right
after all and the brain increased by a reorganization of proportions in the
developing embryo, then the ratio of b-values is an appropriate comparison,
since it emphasizes the constant difference in relative brain weight at any
postnatal size. If, however, the brain evolved by maintaining a constant
ratio with body weight during phylogenetic size increase (the simplified
situation of fig. 2), then s is a more meaningful comparison because it
measures that increase in size. (It is unlikely in the extreme, of course, that
such a multifaceted phenomenon as brain evolution proceeded according to
any model as simple as these.)

Although comparisons by the b-ratio and s criterion are both ‘‘correct,”’
this does not label them as neutral, commensurate, and purely deseriptive
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schemas. Both contain an implicit preference for a certain theory of brain
evolution. I am not arguing for the theory more congenial to the s com-
parison, but merely pointing out that our previous reliance on b-ratio com-
parisons has directed our thinking along certain unsubstantiated lines.

b) Acceleration and Paedomorphosis in the Evolution of Fossil
Invertebrates

Newell (1949) studied the relationship of suture length to conch diameter
in an evolutionary series of Paleozoic ammonoids. He plotted the inferred
ontogeny of five genera in the series and found a nearly constant a ranging
from 1.20 to 1.28; b-values increase continually with time. Sinece a > 1,
descendants reach any given suture-length/conch-diameter ratio at a
smaller size than ancestors. We have a case of acceleration in development,
or recapitulation. Although Newell recognized this (1949, p. 115), he used
only the b-ratio comparison and obtained no measure for the extent of
acceleration. That measure is provided directly by the similarity criterion s.
For the relationship between Uddenites (o= 1.23) and its descendant
Medlicottia (o= 1.24), for example, using an a of 1.235 and estimating
b1/bs from Newell’s graph (his reported b-values are incorrect) :

15 1/(1—-1.235)
—_—f — —4.25563 —
s = (22) = .67 = 5.50. (12)
Thus, Medlicottia reaches the same suture-length/conch-diameter ratio as
its ancestor at a conch diameter 5.5 times as small.

Hallam (1968) studied the evolution of Gryphaea through Liassic de-
posits of England. Although discussion still proceeds on whether this oyster
increased the tightness of its coil during the lowermost Lias, Hallam has
shown that the overall trend throughout the lower and middle Lias was
toward decreased coiling. He finds that length/height is a good measure of
coiling : the greater the relative height, the tighter the coil. Ontogenetic
plots for log length versus log height display, for almost all samples, a
very small range of o from .77 to .82; that is, coiling increases during
ontogeny. But geologically younger samples show progressively increasing
values of b. Using the b-ratio criterion, these younger samples decrease
their coiling because they have, at any common size, a greater length/height
ratio. But this may not be the appropriate contrast. Gryphaea also increases
in size during phylogeny. If increase in size equaled the value of s, then,
in one important sense, there would be no decrease of coiling at all; adults
would have the same shape at their progressively larger size. Lower length/
height at any common size would constitute a false comparison; for that,
common size would represent a different developmental stage in each
sample. But if the rate of size increase were smaller than s, Hallam would
be upheld because adult descendants would not proceed far enough along
their ontogenetic curve to attain the shape of adult ancestors; their final
shape would be that of a juvenile stage of ancestral ontogeny, that is, less
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tightly coiled. The difference between s and the actual size increase would
measure the extent of this paedomorphosis. This indeed is the case. If we
take the two end points of the sequence—@. arcuata obliqguata and its ulti-
mate descendant G. gigantea, both at a = .800—s is 7.42 while the actual
ratio of maximal sizes is 1.76.

¢) Metabolism

For most animal groups, log-log plots of basal metabolism versus weight
have a slope near .66 (usually slightly higher); some relation between
metabolism and body surfaces is strongly implied (Kleiber 1961; Gould
19666, p. 613-615). While a varies little in these plots, b ranges widely
among groups. For example, Dawson and Hulbert (1969) present the fol-
lowing generalized curves (statie, interspecific) for marsupials and eu-
therians:

M = 12.,6W-7* for marsupials and

M —=16.4W-5 (from Kleiber) for eutherians. (18)

These authors use the b-ratio comparison in concluding that marsupial
metabolism is about 30% below the eutherian rate at any body size (1969,
p. 383). I regard this comparison as appropriate. We can also compute s
and state that an average eutherian is 2.9 times as heavy as an average mar-
supial of the same metabolism/body-weight ratio. Likewise, Lasiewski and
Dawson (1967) cite identical a = .72, but unequal b-values, for passerine
and nonpasserine birds (static, interspecific plots; Zar [1968] has chal-
lenged the curve-fitting technique of these authors). By the b-ratio com-
parison, the metabolic rate of an average passerine is 1.62 that of an
average nonpasserine at any body weight; by the s eriterion, the average
passerine is 5.66 times heavier than an average nonpasserine of the same
metabolism/body-weight ratio.

1IV. THE SIMILARITY CRITERION $ AS A TEST FOR GEOMETRIC SIMILARITY
BETWEEN ANIMALS ON DIFFERENT REGRESSIONS

In this section, I use s to test a hypothesis: that the magnitude of a
transposition between regressions of constant a is such that animals in a
new size range remain geometrically similar to related forms in the original
range.

a) The Comparison of Closely Related Species

Meunier (1959a, 1959b) developed his concept of transpositional al-
lometry in studying gulls of the genus Larus. Plotting the cube root of
weight versus vertebral column length for adults in each of five species,
Meunier found little variation in o; but the lines were transposed, one
over the other, with the higher b-values belonging to species of larger body
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F1a. 5,—The maintenance of geometric similarity. Line of o = 1.003 fitted
to the joint means for cube root of weight versus vertebral eolumn length in
five species of gulls. Within each species, o is about 0.75. From Meunier (1959b).

size. If a single line is fitted to the joint means of the five species (fig. 5),
the interspecific o is 1.003 (intraspecific a averages 0.75). Thus, as a result
of transposition, larger species are geometrically similar to smaller ones
for this relation. This should be reflected in a correspondence between the
value of s and the actual ratio of mean sizes. Indeed, for the two end points
of the series, L. ridibundus and L. marinus at a = 0.75,2 s is 1.90 while the
ratio of mean z-values is 1.88.

Rohrs (1958) studied the brain-body relation in Felis caracal and the
larger cat, F. lynz. For intraspecific plots of adults, a is .226 for both
species, but F. lynz has a higher b-value than F. caracal, the ratio of b-
values being 1.163. By his allegiance to the fallacious notion of b’s size
independence, Rohrs is compelled to offer the following interpretation :

Caracal skulls of the same size as lynx skulls have an absolutely smaller brain volume
[true, so far, of course]. Therefore the differences in proportion between the skulls of
the earacal and lynx are independent of their size. ... From our previous knowledge of

2 T have, in this and other cases, used, as a common c-value, the mean between regres-
sions that exhibit small differences in this parameter. When I have done this, I have
always recalculated b for each line by passing a line of average o through the joint
mean. If I could not determine the joint mean, I abandoned the caleulation. This must
be done because the relation between b and o is so strong, especially when z =1 is far
from the actual range of data (White and Gould 1965). Large errors would enter if s
were computed from a ratio of b-values, each determined from a different o, even though
that difference be small.
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the evolution of the brain, we know that phylogenetic increase in cranial eapacity often
ocecurs by transpositions [sprunghafte Vergrdsserungen—literally ¢¢saltational in-
creases’’] that are independent of body size. [1958, p. 286-288]

But comparison at the same size is inappropriate, for F. lynz is larger than
F. caracal; thus, we compare a small caracal with nothing, a large caracal
with a small lynx, and a large lynx with nothing. In fact, there has been
no relative increase of brain size at all, for the lynx, at its larger size, is
a scaled-up replica of the caracal for this relation:

s = 1.1631/(1—.220) — 11631270 = 1.21, (14)

while the ratio of mean body weights for the two species is 1.16. Note that
this geometric secale-up eorresponds with the unorthodox interpretation of
brain evolution that would vindicate the s comparison for Jerison’s data
mentioned earlier.

Bihrens (1960) provides a similar case for endocranial volume versus
skull length in the mustelid carnivores Mustela vison and Martes martes.
At a common o of .44, the larger M. martes has a higher b-value; s is 1.30;
the ratio of mean skull lengths is 1.25.

Zollitsch (1969) stated, as the main conclusion of his comparison between
the skulls of Canis lupus and C. aureus: ‘‘a jackal’s skull is differently
proportioned than a hypothetical wolf’s skull of the same size. . . . There-
fore a jackal can in no way be viewed as a wolf that decreased in size”’
(p. 181). Again the comparison is a false one. Zollitsch has proved that
you cannot make a jackal’s skull by extrapolating down the static intra-
specific regressions of wolf characters to a jackal’s size. But we know that
extrapolation of strong allometry to new sizes quickly produces inadaptive
proportions. There are several meaningful senses of ‘‘scaling’’ down or
up; the notion should not be restricted to the extrapolation of ontogenetic
or statie regressions to new sizes. Geometric scaling occurs when actual size
differences equal calculated s-values.

An inarticulated premise pervades most of our literature on this subject:
that scaling up or down an ontogenetic curve is somehow ‘‘simpler’’ and
less likely to require genetic modification than any other mode of size
change. In fact, a transposition, in which s equals the extent of initial size
change, requires only that an animal begin allometric growth with the same
proportions as its prototype, but at a different size (fig. 4). I shall argue
below, in discussing local races, that this mode of size change is as ‘‘simple’’
as any other.

Zollitsch’s conclusion does not exclude the possibility that a jackal’s skull
may, for certain relationships, be a geometrically scaled-down model of a
wolf’s skull. Indeed, it is. This is clear from the many plots of constant a
that Zollitsch draws: when allometry is positive, b for jackal skulls is higher
than that for wolf skulls; when allometry is negative, wolf skulls have the
higher b-values. Consider the dimensions of the fourth upper premolar, the
important carnassial tooth. For a plot of its length versus basal length of
the skull, a is 1.9 for both species; b is higher for jackal skulls, as a hypoth-
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esis of geometric similarity requires. Yet, although there is no overlap in
basal length between species, Zollitsch (p. 172) interprets the situation as
follows: “‘On the average, a jackal’s upper carnassial tooth is, independent
of skull size, 49.3% longer than that of a wolf.”” But the value of s for
these two regressions is 1.56, while the ratio of mean basal lengths for the
two species is 1.51. An average wolf’s skull has a carnassial of the same
relative length as does the average jackal’s skull. The same is true for
carnassial width versus basal length, where s is 1.47. For carnassial dimen-
sions, an average wolf’s skull is a scaled-up geometric replica of an average
jackal’s skull. Geometric similarity is preserved by a transposition of al-
lometry lines expressed as a shift in b-values.

As a final example, I may cite Bohlken’s (1967) comparison of the
American bison with its slightly smaller European counterpart. Bohlken
makes all his contrasts in the traditional way: for systems of constant a,
he states (p. 88, for example) that differences in b are independent of size
because they signify a constant ratio between y-values of two regressions at
any z. In fact, many of the differences in b are size dependent because they
allow the American bison to maintain the same shape as the European bison
at its larger size. The ratio of mean basal skull lengths for the two species
is 1.06; s is near this value for many relations with basal length: 1.04 for
infraorbital width, 1.07 for occipital height, and 1.05 for circumference of
the horn. In several ways, the skull of an American bison is a geometrically
scaled-up model of its European prototype.

b) Ewvolutionary Sequences

Kurtén (1955) studied the relationship between paracone height and
crown length in upper first molars of the Pleistocene cave bear, Ursus
spelaeus, and its close relative, the smaller, modern brown bear, U. arctos.
Allometry is positive and of almost equal intensity in both species: mean a
is 1.47 (fig. 6). Yet, as we have come to expect when o > 1, the line for the
larger cave bear is transposed below that for the brown bear. In formu-
lating an explanation for this shift, Kurtén considers the consequences of
extrapolating one curve to the size range of the other species: ‘‘Imagine
the allometriec pattern of U. arcfos projected into the larger size of U.
spelaeus. The result would be a very hypsodont tooth. . . . The first molar
would then jut out of the tooth row and probably inconvenience its bearer’’
(1955, p. 114). In fact, Kurtén’s data imply strong selection to maintain
a constant molar shape at very different sizes. For six populations, mean
hypsodonty indices (100 X paracone height/crown length) vary only be-
tween 38 and 43 (1955, p. 116, table 2)—‘a surprising constancy,’”’ Kurtén
notes, ‘‘despite marked differences in gross size’’ (p. 115). Shape is pre-
served by a shift in b-values, and s should equal the actual ratio of mean
sizes. For the two populations of figure 6, s is 1.50 while the ratio of mean
sizes (1955, p. 116, table 3) is 1.42.

The great debate on Gryphaea has been plagued, since its ineeption in
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F1a. 6.—A transposition in the evolution of bears. Both cave bears (Ursus
spelaeus) and brown bears (U. arctos) have the same average shape for para-
cone height/crown length of the first upper molar. Since intraspecific o > 1, the
line for the larger cave bear must be transposed below that of the brown bear
to preserve a constant shape. From Kurtén (1955).

the 1920s, with biometric errors arising from the improper treatment of
size. All admit that this Jurassic oyster increased in size during the depo-
sition of lowermost Liassic strata in England. The major argument is
whether it inereased the intensity of its coiling as well. (Hallam’s earlier-
mentioned work on the later evolution of Gryphaea is not involved in this
case [1968].) I have reviewed elsewhere the various contentions and
the methodological errors upon which they were based (Gould 1970 and in
press). In 1965, Burnaby made the surprising claim that Gryphaea had
decreased the intensity of its coil from the Angulata to the Gmuendense
zone. For a growth series in each sample, he plotted left (coiled) versus
right (flat) valve length. The intensity of coiling increases in ontogeny;
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the power function applies with a value of a that Burnaby took as a con-
stant 1.766 in all samples. Burnaby’s claim of decreased coiling in phylog-
eny is based upon a systematic decrease in b with time: at any given size,
descendant populations have a lower coiled-valve-length/flat-valve-length
ratio than their ancestors. This ratio is a fair measure of coiling in
Gryphaea, but phylogenetic size increase throws doubt upon such a com-
parison, for it leads to the contrast of an ancestral adult with a juvenile
descendant of the same size (see analogous cases in Zollitsch’s canids and
Rohrs’s felids, discussed above). Size increases, b decreases, and o < 1;
we have all the conditions for geometric scale-up (i.e., for no change in
shape for comparisons at similar developmental stages). Mean b for four
Angulata (ancestral) populations is .237, while mean b for two Gmuendense
populations is .210; therefore, s is 1.17. We cannot compare this with the
ratio of mean z, since these are ontogenetic plots, but taking Hallam’s data
(1959) for maximal sizes in the two zones, the z-ratio of largest specimens
is 1.21. The large, descendant Gryphaea of the lowermost Lias is a geo-
metrically scaled-up replica of a smaller ancestral Gryphacea; allometric
lines shift in phylogeny in order to maintain Gryphaea at the same shape
with inereasing adult sizes.

¢) Domestication and Local Races

Walton and Hammond (1938) performed breeding experiments between
Shetland ponies and Shire horses. Plotting forelimb length versus body
length for ontogenies of parents and offspring, they claimed (but did not
caleulate) a common o for all regressions (in the neighborhood of 0.8) and
increasing b-values for the following series of four plots: pure Shetland,
Shire father and Shetland mother, Shetland father and Shire mother, and
pure Shire. This is also the sequence of final adult size. Walton and Ham-
mond (1938, p. 329) give the usual interpretation: ‘‘This implies that the
pure Shetland is relatively shorter in the limb than the pure Shires and
the crosses are intermediate and that this is true at any body size.”” But
again, this compares an adult Shetland with a juvenile Shire, and we know
that young horses have relatively long legs. The average body-length/fore-
limb-length ratio for adult Shetlands is 1.395 (at mean length of 195 cm)
and 1.36 (at body length 318 em) for the single Shire adult that they cite.
The b increases in order to preserve a constant shape at similar develop-
mental stages in forms of different sizes.

Teissier (1936) discusses plots of claw length versus body length for two
local races of the lobster Homarus americanus. Before maturity, both sam-
ples lie on the same regression with a slope of 1. At maturity the slope
changes to 1.55 for each species; but this occurs at 22-25 em body length
in one sample and at 33-35 cm in the other (fig. 7). Since o is 1 for ju-
venile growth, both populations reach maturity with the same shape for this
relation ; s, as computed from the two regressions for mature lobsters, must
equal the ratio of sizes between the two populations at the onset of maturity.
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F1a. 7.—Claw length (ordinate) versus body length (abscissa) for two local
races (points and circles) of the lobster Homarus americanus. Ontogenetic
plots; a changes from 1 to 1.55 at maturity, but maturity occurs at different
sizes, producing a transposition. Modified from Teissier (1936).

Of this type of growth, Teissier aptly remarks (1936, p. 631): ¢ The dif-
ferences between local races of lobsters are not due to differences in the
nature or the intensity of growth, but to the fact that the same series of
processes takes place later in certain races than in others.”” I had this
example in mind when I stated earlier that a transposition may represent
as ‘‘simple’’ a change in growth as the extrapolation of an ontogenetic
curve to new sizes; for, in this case, one population begins allometric
growth with the same shape, but at a larger size, than the other. That is
the only difference. Thereafter, each stage is reached by one curve at a
correspondingly larger size, equal to s, than the other. Many multivariate
studies of growth have distinguished size and shape vectors as mathe-
matically independent (that these are ‘‘real’’ biological entities and not
mere formal abstractions is unproved, but at least not implausible).
Reyment (1961, 1966) has argued that size vectors are more easily altered
in evolution than shape vectors. Shifts in b that change size and preserve
shape may refleect minor genetic differences or phenotypic responses to
varied environments. I doubt that any more is involved in the Shetland-
Shire case. Here the sequence of increasing b parallels that of size at birth.
If all these horses, whatever their size, are born with approximately the
same proportions and attain similar shapes as adults, then their allometrie
relations must form a set of transposed regressions.
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Bohlken (1964) compared wild and domestic populations in five bovid
species. I shall cite just one among many cases of geometriec scaling: the
relationship between cheek width and basal length in Bos (Bibos) gaurus.
For wild and domestic forms, a is constant at 1.61. Bohlken’s b-values are
incorrect; they were recalculated to pass through the joint means at his
given a. For the two regressions, s is 1.09; the ratio of mean basal lengths
is 1.08. Moreover, geometric similarity is preserved throughout the size
range, for the ratio of smallest basal lengths is 1.10, while that of largest
basal lengths is 1.08.

Throughout the 1920s, Nomura and his colleagues made a series of metic-
ulous studies on local variation in relative growth of molluscan shells. Find-
ing little variation in o within a species, they used its average value to
compute b for all regressions. Their data abound in cases of geometric
scaling that they did not recognize. For the periwinkle Littorina sitchana
from Asadokoro and Yunoshima at a = .74 for height versus width (No-
mura 1926), b-values are 1.419 and 1.332, respectively, and s is 1.28 for
these ontogenetic plots, while the ratio of maximum shell sizes is 1.29. For
the snail Purpure from Oshima-Watanoha and Bentenjima at o = .92 for
height versus width (Nomura 1928), b-values are .697 and .684, respee-
tively, and s is 1.28, while the ratio of maximum shell sizes is 1.30. Nomura
tried to give b a general meaning as a ‘‘local constant.’”’ Although incorrect
as a universal interpretation, the term is apt for these cases; b seems to
vary in response to local conditions that influence size but not shape.

V. DISCUSSION : THE IMPORTANCE OF GEOMETRIC SIMILARITY IN EVOLUTION

I have shown, in the last section, that allometric plots of related animals
are often transposed as adaptations to maintain geometrie similarity (con-
stant proportionality of parts) over a wide range of size. If this claim con-
tains any element of significance or surprise, it must be shown that
preservation of shape is not the anticipated result of change in size. We
might be tempted to consider geometric similarity as ‘‘no change,”’ as,
therefore, the easiest way (in a formal sense at least) of altering size.
Yet this is not so for two major reasons:

1. The most direct path to increased size—the extrapolation of ontogeny
—does not produce geometric similarity, for most individual growth is
replete with strong allometry in many of its features.

2. If geometric similarity is not the most direct way, is it at least the
best way ? It is not, because large animals must change their shape in order
to function as well as smaller animals built upon the same plan (a conse-
quence, for the most part, of declining surface/volume ratios at increased
sizes [Thompson 1942; Gould 1966b]). Thus, I conclude that geometric
similarity is a problem, not an expectation.

I shall try to resolve this problem in two ways: by showing that propor-
tioned change in size can be accomplished easily (in a genetic and develop-
mental sense) and by arguing that it might be advantageous to grow this
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way (as an adaptation). Some clues to the first point can be gleaned from
the vast literature on dwarfing, both raecial and individual, in animals and
man. There are many kinds of dwarfs and more names by an order: of
magnitude to describe them. Three general types (each with a variety of
genetic bases) seem most common. Achondroplastic dwarfs have very short
limbs with normal heads and trunks (Stephens 1943; Stevenson 1957) ; the
condition is usually inherited as a simple Mendelian dominant. Infantilized
dwarfs retain juvenile proportions and often do not reach sexual maturity
(Snell 1929 ; Smith and MacDowell 1930; McKusick and Rimoin 1967). In
a third, and broader, category lie the proportioned dwarfs—miniaturized
replicas of normal forms. Races of proportioned dwarfs—and mutated in-
dividuals in normal populations have been described in a wide variety of
animals, both living and fossil (Mead, Gregory, and Regan 1942; McKu-
sick 1955; Gates 1958, 1961; and several articles of the symposium edited
by Weninger 1954). In man, proportioned dwarfs include hypopituitary
ateliotics within normal populations (Andersen 1966; Dupertius 1945;
MecKusick 1955; McKusick and Rimoin 1967) and several ‘‘pygmy’’ races
and tribes. Debate has raged over the type and genetic basis of dwarfing
in these ‘‘pygmies.”’ The true pygmies, the Ituri of the African Congo
(Gusinde 1955), have been likened both to achondroplastic (Gates 1958)
and to infantilized (Hohenegger 1954) dwarfs, but most anthropologists
speak of them as fairly well-proportioned (Adé 1954). Few doubt that
dwarfing among the Ituri occurred via a major mutation (Fischer 1950,
1954), but dwarfing among other peoples has been asceribed to poor con-
ditions of life (Gusinde 1956) and to gradual selection within the poly-
genic series controlling general body size (Fischer 1950). Some outstanding
cases of proportioned giantism have also been described in man; see
Schlaginhaufen’s (1959) 25 years of observation on a man 254 cm tall.

Two points are, I think, relevant to our argument:

1. The genetic basis of proportioned dwarfism is often simple and mono-
factorial. Mead et al. (1942) and Johnson, Harshfied, and McCone (1950)
traced proportioned dwarfism in beef cattle to a simple autosomal reces-
sive; the same is indicated for human ateliotics (McKusick 1955; see
MecXKusick et al. [1965] on dwarfing among the Amish, and McKusick and
Rimoin [1967] on the pedigree of General Tom Thumb).

2. Tts developmental basis is, likewise, often simple. Ateliotic dwarfs in
normal populations owe their condition to hypopituitarism, that is, to un-
dersecretion of human growth hormone (HGH) (see Korner [1965] on the
action of HGH and Glick et al. [1965] on factors that affect its secretion).
Rimoin et al. (1968) have recently found inactive HGH in the Ituri
pygmies. Oversecretion of HGH produces well-proportioned giantism if
accomplished before closure of the epiphyses (and disproportionate acro-
megaly if after [Andersen 1966]).

My previous analysis of geometric similarity was based upon allometric
transpositions. Is the genetic basis of any transposition known ¢ Is it simple ?
Sinnott and Dunn (1935) have shown that such differences in b arise from
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single gene effects in gourds and peppers. Cock (1966) has reanalyzed
previous data on the creeper gene in fowl, an autosomal semidominant
(lethal in homozygous form) that produces chondrodystrophic syndromes
(reduced length of limb bones). Plotting tarsometatarsal length versus body
weight for prenatal growth from 7 days to hatehing, Cock showed that the
regression for ereeper embryos was transposed below that for normals; the
slopes of the two lines did not differ significantly. The developmental basis
of creeper, though unknown, is certainly established during the first 7 days
of life. Perhaps the formation of the tarsometatarsus within the limb bud
is merely delayed in time relative to normals; this would be sufficient to
produce the transposition. It is intriguing, if only analogical, that key
features in proportioned dwarfs are often delayed in time of appearance
(sexual maturity [McKusick 1955; Andersen 1966, p. 208-209] and pu-
bertal growth spurt [McKusick and Rimoin 1967] in human ateliotics and
ossification centers of limb bones in dwarf rabbits [Crary and Sawin
1949]).

Thus, in conclusion :

1. Proportioned dwarfs and giants often owe their condition to single
gene changes that control simple hormonal mechanisms.

2. Allometric transpositions may result from single mutations.

3. Geometric similarity in dwarfs and giants might arise from the
simple acceleration or delay in ontogenetic time of appearance of a feature
relative to body weight (fig. 8). Such a change in time will produce a
transposition,

The major theme underlying this whole discussion is an old one: the
interaction of growth and development. Falkner (1966, p. xv) has written :
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F1g. 8.—Production of proportioned dwarf by simple delay in time of appear-
ance in development of a feature; ontogenetic plots; a = body size at appear-
ance of allometric feature for a normal animal (regression N); b = body size
for appearance of the same feature in a proportioned dwarf (regression D);
zn, and x4 are the final sizes of normals and dwarfs, respectively. Both z, and
4 have the same shape (y/z, sinece both terminal points lie on a line of o =1).
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We have been taught that growth refers to the multiplication of cells and to size
changes, while development concerns the maturation of such structures and their con-
comitant funetions., Today we realize that the whole process—eall it what you will—
is extremely complex and a mass of processes interacting upon each other. Because, in
addition, there is no dividing line between the two terms, it seems desirable to drop an
unnecessary and rather false division and use but one of the two good words.

I believe that this is an oversimplification and that the two processes, while
highly intercorrelated, are not completely interdependent. It is the conclu-
sion both of some modern multivariate studies (Reyment 1961, 1966) and
of all the old phylogenetic arguments collectively grouped under the con-
cept of heterochrony (de Beer 1958) that, under certain circumstances, the
usual correlation of growth and development, of size and shape, can be
unlocked. Transpositions that have as their adaptive significance the preser-
vation of geometric similarity at new sizes express this uncoupling of the
usual correlation between size and shape, for they permit size to change
alone. The possibility of this uncoupling has several consequences for
macroevolution, two of which are important to this paper:

1. It permits rapid evolution of size. A strong and sudden selective pres-
sure for size change will require a rapid response. Simple genetic and hor-
monal changes can unlock the usual correlations of ontogeny and produce
an immediate and major change in size alone. Szarski (1964) has argued
that large changes in size usually precede the compensatory changes in
shape that mechanical analysis would predict. The large and rapid fluctu-
ations in size that mark the adaptation of many vertebrates to Pleistocene
cycles of glacial advance and retreat often occurred without change of
shape (Kurtén 1968; Stephenson 1963).

2. It can produce an evolutionary improvement in shape. This statement
is enigmatic. How can no change of shape be an improvement in shape?
It can because the maintenance of shape at increased size does not yield an
array of forms that are mechanically similar; mechanical similarity re-
quires allometric growth (Gould 1966b). Static a-values for brain-body
plots usually lie near .66 (Jerison, in press). If we take this a-value as the
criterion of mechanical similarity, then large animals functioning as well
as smaller ones will have relatively smaller brains. Now, if geometric simi-
larity (a = 1) is maintained during the phylogenetic size increase of a
lineage, the large descendant will harbor a brain far larger than that pre-
dicted on mechanical grounds (size increase at a = .66). So we end with
what the Pirate King called ‘‘a most ingenious paradox’’: that phylo-
genetic improvement in function can arise from an evolution in size that in-
cludes no change of shape.

VI. SUMMARY

The coefficient b of the power function y = bz has long been misinter-
preted as a measure of size-independent differences between regressions.
Just the opposite is true; b is a scale factor that expresses differences in
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size between comparable animals of the same shape on two or more regres-
sions of constant o. When a is invariant for two regressions, a similarity
criterion s can be extracted from the two b-values (s= [by/bs]/1~®);
s measures the relative difference in size at which animals on the two curves
have the same shape. If this caleulated difference equals the observed dif-
ference in size, then the transposition (shift of regression line without
change of slope) occurred in order to maintain geometric similarity in a
new size range,

I present examples of geometric similarity via transposition for body
shape in gulls, brain weight in felids and primates, tooth shape in canids,
skull form in bovids, the evolution of Gryphacea, the growth of horses, and
differences between local races of lobsters and molluses.

The literature on dwarfism in humans and animals shows that propor-
tioned change in size can have a simple genetic and developmental basis.
As a mode of size change, geometric similarity may be important in maecro-
evolution because: (1) it allows size to change rapidly by uncoupling the
usual correlation of growth and development and (2) it ecan produce a
phylogenetic increase in effective organ size when the expected correlation
of that organ with body size is negatively allometrie.
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