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S

Given two sets of landmark data which differ in shape, it is useful to determine the
extent to which shape variation can be explained by the perturbations of individual land-
marks. We propose a method for assessing this, based on analysing the relative reduction
in distance between the shapes that can be achieved by varying the location of a single
landmark. This method is applied to a set of landmark data from the cervical vertebrae
of two subspecies of gorillas.

Some key words: Horizontal geodesic; Landmark; Procrustes mean; Shape; Shape difference; Shape distance;
Weight function.

1. I

Shapes of two-dimensional configurations are often described or analysed in terms of
landmarks. Such a description may be a matter of convenience, or it may represent a
recognition that the landmarks occupy positions of functional significance. The use of
landmarks for the analysis of shape was proposed by Galton (1907), and the development
of thin-plate splines by Bookstein (1991) for spatial interpolation allowed researchers the
opportunity to couple Galton’s landmark-based approach with D’Arcy Thompson’s
method of coordinates (Thompson, 1917). Kendall (1984) proposed that the shapes of k
landmarks in two dimensions are representable on the complex projective space CPk−2 (4),
which has 2k−4 real dimensions and complex sectional curvature 4.
The problem that we shall address in this paper is how to assess the importance of

individual landmarks in determining shape variation. For example, consider the two con-
figurations of landmarks chosen from specimens of the fifth cervical vertebrae of two
subspecies of Gorilla gorilla, as shown in Fig. 1. It is reasonable to suppose that the
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differences in shape between the two specimens are associated with the differing postural
behaviours of the two subspecies. In particular, the differences in behaviour place different
biomechanical demands on the vertebrae. Upright posture places extra stabilisation
demands on the muscles, which are in turn anchored to the vertebrae. One possible
adaptation to gain efficiency in head-neck stabilisation would be for the posterior tubercles,
 in Fig. 1(a), to extend and rotate anteriorly. This interpretation is supported by
Figs 1(b), (c). The most prominent shape difference between the two specimens can be
seen in the large triangle at the top of each configuration. The angle at the posterior
spinous process, , is smaller for the Gorilla gorilla gorilla specimen than for Gorilla
gorilla berengei. This can be explained by the different location of  relative to the other
landmarks. On the other hand, if the landmark configurations are taken out of context,
then the principal role of  in the shape variation is not obvious. For example, a smaller
angle at  could also be explained by lengthening the – segment. The question
arises whether or not it is possible to identify which of the possible explanations is the
most parsimonious without presuming any specific biomechanical explanation.

PSP

ASP

PVB DVB PT

(a) (b) (c)

AT
AVB

Fig. 1: Gorilla data. (a) shows 7 landmarks placed on the fifth cervical
vertebra of a female gorilla; /, posterior/anterior surface of spinous
process; //, posterior/anterior/dorsal surface of vertebral body;
/, tip of the anterior/posterior tubercle. (b) and (c) show the corre-
sponding landmark coordinates for two specimens of different subspecies
of gorilla: (b) Gorilla gorilla berengei; (c) Gorilla gorilla gorilla. In (b) and
(c) a Delaunay triangulation has been superimposed over the landmarks
for convenience in comparing the shapes of the two configurations.

In simple terms, we seek to explain the variation in shapes between different configur-
ations of landmarks by possible motions of the landmarks themselves. Obviously, the
landmark perturbations that cause the observed variation in shape are not identifiable
from the shape variation. Mathematically, this follows from the fact that the geodesic path
between any two shapes in Kendall’s shape space CPk−2 (4) can be ‘lifted’ in various ways
to a geodesic path in an ambient space such as pre-shape space, form space or pre-form
space; see Kendall et al. (1999, Ch. 6). The standard solution to this problem is to lift
geodesics from Kendall’s shape space to horizontal geodesics within the ambient space.
For example, Fig. 2 shows two artificial configurations of landmarks, (a) and (b), which
differ in shape. In Fig. 2(c), the vector displacements of the landmarks corresponding to
a horizontal geodesic in pre-shape space are displayed. The vector displacements shown
in Fig. 2(c) provide an adequate explanation for the observed shape differences. However,
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671Shape analysis

an alternative explanation for the observed differences between configurations (a) and (b)
is that the observed variation in shape is caused by the displacement of a single landmark,
namely the right-most landmark in each configuration. For biological models which seek
to explain morphology through local transformations and changes to a few neighbouring
landmarks, the latter interpretation is more useful. In the artificial example, all of the
variations can be explained in terms of the influence of this one landmark.

(a) (b) (c)

Fig. 2. (a) and (b) show two artificial configurations of eight landmarks
each. (c) shows transforming landmarks along the geodesic from (a) to

(b) in Kendall’s shape space.

Two questions arise about the contributions of individual landmarks to shape variation.
First, what landmarks are responsible for the observed shape changes? More precisely,
what proportion of the observed shape changes are caused by local changes in a given
landmark? Secondly, what landmarks can best explain the observed shape changes? More
precisely, what proportion of the observed changes could possibly be caused by local
changes in a given landmark?
The first question cannot be solved because a given shape change can be explained in

different ways with different landmarks, so shape information itself cannot uniquely ident-
ify the local sources of variation in the landmarks which are responsible for the observed
variation in shape.
We wish to answer the second question, which is relevant to the determination of

landmark influence because, for reasons of parsimony, when everything else is equal, it
makes more sense to explain variation by the perturbation of few landmarks than many
landmarks. Thus, in a set of k landmarks, it would usually be better to explain the variation
in shape by moving one landmark than by moving k−1 landmarks. This is not to say
that shape variation will never be due to the movement of many landmarks. However,
any analysis of the causes of shape variation often begins by studying the possible expla-
nations due to local, i.e. single-landmark, variation.
We therefore seek a measure of landmark influence that is local in the sense that it

measures the possible contribution of each landmark to shape variation. For each land-
mark, such a measure would determine the proportion of observed shape variation which
can be explained by perturbations of that landmark alone. In this paper, we will propose
and discuss a simple measure of this type. A secondary problem to be considered is how
to test for significant differences of shape between two small sets of shape data.
The idea of assessing the influence of individual landmarks has been considered by Lele

& Richtsmeier (1992) and by Cole & Richtsmeier (1998). Our analysis shares many of
the goals of this previous research. However, it differs in one major respect, namely that
it is tailored to accompany a Procrustes analysis of shape on Kendall shape space rather
than an analysis through -, Euclidean distance matrix analysis, and related tech-
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niques associated with the form difference matrix. Lele & Richtsmeier (1992) determined
the influence of a landmark in form difference analysis - by deleting the landmark
to determine the effect on shape. A delete-one approach is not as directly applicable to
Kendall’s Procrustes analysis because landmark deletion also affects location, scale and
orientation adjustments, which are used to define the Procrustes metric. Thus configur-
ations with deleted landmarks must be similarity-adjusted. It follows that k landmarks
are not commensurate with those for k−1 landmarks. The graphical tool proposed in
Cole & Richtsmeier (1998) has similar goals to our method. However, it differs in being
graphical rather than quantitative in nature. The properties of our weight function, as
displayed in Theorem 4 below, provide much of the motivation for its use.

2. P   

Suppose that z and w are two configurations with k labelled vertices in the plane and
write [z] and [w] for the shapes of z and w, respectively. As usual, we represent a configur-
ation in R2 by a k-dimensional complex column vector z= (z1 , . . . , zk )T, where z1 , . . . , zk
are the k labelled vertices. Where needed, we shall represent the complex conjugate of a
landmark coordinate z

j
by z*
j
.We shall also let z* represent the complex conjugate of the

transpose of z, so that the usual Hermitian inner product between such vectors can be
denoted by w*z=Wk

j=1
z
j
w*
j
and the norm of a vector z of landmark coordinates is deter-

mined by dzd2=z*z. Finally, let 1
k
denote the vector (1, . . . , 1)TµCk whose entries are

all one.
To keep separate the contribution of the individual vertex of the configuration z in the

properties that we are interested in, we standardise with respect to translation by moving
configurations so that their centroids are at the origin. Then the resulting quotient space
is

P=qzµCk : ∑k
j=1

z
j
=0r .

Kendall’s pre-shape sphere is isometric with the sphere in P, and so the shape space with
the quotient in this sphere by SO(2). Thus, in particular, if z= (z1 , . . . , zk )T and w=
(w1 , . . . , wk )T are two configurations with centroids at the origin, then the geodesic distance
r([z], [w])µ[0, p/2] between two shapes [z] and [w] is determined by the equation

cos r([z], [w])=
|w*z |
dzd dwd

.

A ‘horizontal’ lift to the sphere in P of a geodesic from [z] to [w] is

C (s)=
1

sin s
0
q z

dzd
sin (s
0
−s)+e−ih

w

dwd
sin sr (0∏s∏s

0
), (1)

where s0=r([z], [w]) and hµ[0, 2p) is defined so as to satisfy I{eih(w*z)}=0 and
R{eih(w*z)}�0, in which I ( . ) and R( . ) denote the imaginary and real parts of a complex
number respectively. For the proof of this, see Small (1996) or Kendall et al. (1999, Ch. 6).
Differentiating with respect to s, we see that the jth component v

j
of the initial tangent

vector v=C∞(0) to the curve C at C (0) is

v
j
=

1

sin s
0
Ae−ih w

j
dwd
−

z
j
dzd
cos s
0B . (2)
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3. M  

Suppose that z and w are two given configurations of k planar landmarks each. We
standardise these two configurations so that z*1

k
=w*1

k
=0 and dzd=dwd=1. We wish

to determine the importance or influence of a given landmark of z on the variation in
shape between [z] and [w].
Let e

j
= (0, . . . , 1, . . . , 0)T be the vector with k entries, all zero except for the entry 1 in

the jth position. Consider configurations z∞=z+ee
j
, for eµC, in a neighbourhood of z,

which differ only in the position of the jth landmark. Such configurations no longer lie
in the subspace P, and so we translate z∞ so that the centroid becomes 0 to obtain ze=
z+ee

j
− (e/k)1

k
.We are now in a position to define the weight function on each landmark.

D 1. L et z and w be two configurations of k planar landmarks whose landmarks
are labelled correspondingly. As a measure of the relative importance of the jth landmark in
the shape transition from z to w, we define, for j=1, . . . , k, the weight function

W([z], [w], j )= lim
r�0+

max
|e|=r

r([z], [w])−r([ze], [w])

r([z], [ze])
. (3)

Note that, if r is replaced by a monotone increasing function of r, such as one of the
other commonly used Procrustes shape distances sin(r) and 2 sin (r/2), the effect on the
landmark weights is to multiply each by a constant which depends only on the function
and on the two shapes concerned, but is independent of the landmark label. This means
that a change of function or metric does not change the ratio of any two landmark weights.
In particular, r is the only metric which always assigns to a landmark the natural weight
of one when the shape variation can be fully explained by perturbing that landmark alone.
To evaluate (3), we first note that dzed2=1+z

j
e*+z*

j
e+|e |2(1−1/k), so that

w*ze

dzed
=w*z+d

1
+O(r2 ),

where d
1
=ew*

j
− (w*z)R(z

j
e*), which is linear in r. This gives

|w*z+d
1
+O(r2 ) |=|w*z |+d

2
+O(r2 ),

where d
2
=R{(w*z)d*

1
}/|w*z |. Therefore, since dzd=dwd=1, we have

r([ze], [w])−r([z], [w])=cos−1 |w*z+d
2
+O(r2 ) |−cos−1 |w*z |

=−
d
2

√(1−|w*z |2 )
+O(r2 ). (4)

Similarly, since

K z*ze

dzed K2=1− (1−1/k−|z
j
|2 )r2+O(r3 )

and since cos−1√(1−cx2+dx3 )=√cx+O(x2 ), we have

r([z], [ze])=r√(1−1/k−|z
j
|2 )+O(r2 ). (5)

The ratio of numerator and denominator expansions in (4) and (5) gives

W([z], [w], j )=max
|e|=1

d
2

√{(1−|w*z |2 ) (1−1/k−|z
j
|2 )}

.
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The denominator of this expression does not depend on e and so, to maximise the numer-
ator, we must maximise R{(z*w)d1} as a function of e. However, the real part of (z*w)d1
is the same as the real part of e{(z*w)w*

j
−|w*z |2z*

j
}. Since e is a unit vector, the maximum

of the real part is simply |w*z | |w
j
− (z*w)z

j
|, achieved when

e=
(w*z)w

j
−|w*z |2z

j
|w*z | |w

j
− (z*w)z

j
|
. (6)

Therefore, we obtain the following result.

T 2. L et z and w be two configurations of k planar landmarks standardised so
that z*1

k
=w*1

k
=0 and dzd=dwd=1. T he weight function on the jth landmark is given

by

W([z], [w], j )=
|w
j
− (z*w)z

j
|

√{(1−|w*z |2 ) (1−1/k−|z
j
|2 )}

. (7)

Note that (6) gives the direction of movement of the jth landmark required to achieve
this influence on the variation between [z] and [w].
We can also obtain a representation of the weight function W([z], [w], j ) in terms of

the horizontal lift C of the geodesic path from [z] to [w] as given in (1). We remind the
reader that we shall continue to assume that z*1

k
=w*1

k
=0 and dzd=dwd=1.

T 3. T he weight function can be expressed as

W([z], [w], j )=|v
j
|

1

√(1−1/k−|z
j
|2 )

, (8)

where v
j
is the jth component of v=C∞(0) given by (2).

To prove this, we compare (7) and (8). It suffices to prove that

|v
j
|=
|w
j
− (z*w)z

j
|

√(1−|w*z |2 )
,

which can be checked by plugging into equation (2).
Note that the factor (1−1/k−|z

j
|2 )−D on the right-hand sides of (7) and (8) reflects

the influence of the jth vertex of the ‘standardised’ configuration on the change of shape
when only that vertex moves. It is this factor that makes Wk

j=1
W([z], [w], j )2>1, since

Wk
j=1

v2
j
=1. We also note that the asymmetry is as one should expect: a given increment

Dz
j
makes a bigger contribution to the change in shape when |z

j
| is small than when |z

j
|

is large. Hence, in the latter case, it requires a bigger weight to account for a given change
in shape. Since the factor |v

j
| remains the same when the first two variables of W inter-

change, this is precisely the direction of asymmetry ofW.

T 4. T he weight function has the following basic properties:
(i ) 0∏W([z], [w], j )∏1;
(ii ) Wk

j=1
W([z], [w], j )2�k/(k−1);

(iii ) if k=3, that is if z and w are both triangles on the plane, then

W([z], [w], j )¬1;

(iv) if two configurations of landmarks diVer in shape by only one landmark, then the
weight on that landmark is equal to one;
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(v) W([z], [w], j )=W([w], [z], j ) if and only if either W([z], [w], j )=1 or |z
j
|=|w

j
|.

Proof. (i ) The lower bound is clear from either Theorem 2 or Theorem 3 and the upper
bound follows from the triangle inequality r([z], [w])∏r([z], [ze])+r([ze], [w]).
(ii ) This follows from Theorem 3 and the fact that Wk

j=1
|v
j
|2=1.

(iii ) As the shape of any nondegenerate triangle can be obtained from any other non-
degenerate triangle by moving a single vertex or landmark, it follows that, if we perturb
the chosen jth landmark appropriately, we can always move [ze] along the geodesic from
[w] to [z]. In doing so, we have r([z], [w])=r([z], [ze])+r([ze], [w]) and, by (i), this
implies thatW([z], [w], j )=1.
(iv) Similarly to the proof of (iii), this is equivalent to showing that, in such a situation,

the remaining k−1 landmarks do not change shape as one moves along the geodesic
from one shape to the other. The latter is equivalent to showing that, in such a situation,
the remaining k−1 landmarks do not change shape as one moves along a horizontal lift
of the geodesic from one shape to the other. To see this, we may without loss of generality
assume that j=k, that w=z+ce

k
, where cµC, and that z*1

k
=0 and dzd=1. Translating

w so that its centroid becomes zero maps w to z+ce
k
− (c/k)1

k
, which we still denote by

w. Then, by (1), the configuration, formed by the first k−1 landmarks, at s on such a
horizontal geodesic can be expressed as

1

sin s
0
Cqsin (s0−s)+

e−ih sin s

dwd r (z1 , . . . , zk−1 )T− e−ih sin s

dwd
c

k
(1, . . . , 1)TD .

Clearly, the second term in the square brackets contributes only to the effect of translation
and the coefficient of (z1 , . . . , zk−1 )T contributes only to the size of the configuration. This
implies that the shape of this configuration always remains the same as that of
(z1 , . . . , zk−1 )T, as required.
(v) Suppose that W([z], [w], j )=a. Then the expression for W([z], [w], j ) given by
Theorem 2 implies that

−{z*
j
w
j
(w*z)+z

j
w*
j
(z*w)}=a2 qA1− 1

kB (1−|w*z |2 )−|z
j
|2r

+ (a2−1) |z
j
|2 |w*z |2−|w

j
|2.

This, in turn, gives that

|z
j
− (w*z)w

j
|2=a2 A1− 1

k
−|w

j
|2B (1−|w*z |2 )+ (1+a2 ) (1−|w*z |2 ) ( |z

j
|2−|w

j
|2 )

and then, again by Theorem 2,

W([w], [z], j )2=
|z
j
− (w*z)w

j
|2

(1−1/k−|w
j
|2 ) (1−|w*z |2 )

=a2+
(1−a2 ) (1−|w*z |2 ) ( |z

j
|2−|w

j
|2 )

(1−1/k−|w
j
|2 ) (1−|w*z |2 )

so that the required result follows. %

Note that the converse of (iv) is not true, as is shown by the following counterexample.
Take k=4 and let z= (i/2, D,−i/2,−D )T. Then W z

j
=0, dzd2=W |z

j
|2=1 and |z4 |=D.

Consider the configuration

w=
1

2√(26)
(−i, 1, 5−4i,−6+5i)T.
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Then Ww
j
=0 and dwd2=W |w

j
|2=1. Clearly, the shape of w cannot be obtained from

that of z by changing just the fourth vertex of z. By Theorem 3, the weighting function
associated with the shapes of z and w and with the fourth vertex of z is equal to

|v
4
|

√(1−1/k−|z
4
|2 )

,

where

v
4
=

1

sin s
0
(e−ihw

4
−z
4
cos s
0
),

in which s0 is the Riemannian distance between the shapes of z and w and hµ[0, 2p) is
defined to satisfy eihw*z�0. Since w*z=3/√(26), we have h=0 and cos s0=3/√(26).
Hence, sin s0=√(17/26) and

|v
4
|2=

26

17
|w
4
−z
4
cos s
0
|2=

26

17 K− 3

√(26)
+ i

5

2√(26)
+

3

2√(26) K2= 1

2
.

However, with k=4, we have 1−1/k−|z4 |2=D. Thus, the value of this weight function
is equal to one.

4. A    

Our data concern the fifth cervical vertebrae of two groups of female gorillas, described
in detail in an unpublished 1999 University of Pittsburgh Ph.D. thesis by S. R. Mercer.
Seven vertebrae were obtained from Gorilla gorilla berengei and ten from Gorilla gorilla
gorilla. From each vertebra, seven landmarks were selected as indicated above. The land-
mark coordinates for the data can be found at

http://www.stats.uwaterloo.ca/ Acgsmall/gorillas/landmarks.txt.

Before undertaking an analysis of the influence of each landmark on the variation
between the species, we first determine whether or not there is any statistically significant
difference at all between the shapes corresponding to the two species. LetA represent the
collection of seven landmark configurations for Gorilla gorilla berengei, and B the collec-
tion of ten configurations for Gorilla gorilla gorilla. By analogy with common two-sample
tests, we shall find ‘average’ shapes [z:] and [w: ] in A and B respectively and use the
distance

T=r([z:], [w: ]) (9)

between the average shapes as a test statistic. It will be convenient to average samples of
shapes using the full Procrustes mean as described in Dryden & Mardia (1998, § 3.3).
Suppose z1 , . . . , zn is a sample of n pre-shapes. Once again, each z

j
is standardised to be

a k-dimensional complex row vector with z*
j
1
k
=0 and dz

j
d=1. The complex sums of

squares and products matrix is S=Wn
j=1

z
j
z*
j
. The full Procrustes mean is an eigenvector

corresponding to the largest eigenvalue of S.
If we choose to use the test statistic T in (9), then the next task is to calculate a null
distribution for T under the assumption that A and B come from the same model. In
the interests of model robustness, we ran a permutation test on the test statistic T . The
entire sample S=A^B was partitioned randomly into two groups A∞ and B∞, where
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A∞ and B∞ were of the same cardinality as A and B respectively. For each such random
partition we computed the full Procrustes averages [z:∞] and [w: ∞] and the statistic T ∞=
r([z:∞], [w: ∞]). This computation was repeated over a large number of independently chosen
random partitions. Finally, the rank of the actual intergroup distance T among those
computed using random partitions was determined. Of interest is the p-value of the test
statistic under this randomisation test, namely the proportion of times that the random
statistic T ∞ is greater than the value of T . In the case of the gorilla data, over 10 000
random partitions of the data, the actual intergroup distance T was greater than the
random intergroup distance T ∞ on 9993 of the trials.
Since we can conclude that the Gorilla gorilla berengei and Gorilla gorilla gorilla samples
have significantly different shapes, the next task is to determine what contribution each
landmark might provide to the observed differences in shape. Table 1 shows the landmark
weights from formula (7) for the full Procrustes means of each group. It can be seen that
the weights do not vary greatly with the direction in which they are computed. This is a
consequence of the relatively small dispersion of the full dataset in the shape manifold
CP5 (4). In order to assess the degree of uncertainty in the assignment of these weights, a
nonparametric bootstrap analysis was performed. Seven configurations were chosen at
random with replacement from the seven Gorilla gorilla berengei configurations to form
a bootstrap sample, and ten were chosen with replacement from the Gorilla gorilla gorilla
configurations to form another bootstrap sample. Under repeated bootstrap trials, the full
Procrustes means of each of the bootstrap samples were computed, and the landmark
weights in both directions were found. The results are given in Table 1.

Table 1. Weights assigned to individual landmarks in the gorilla data in
Fig. 1(a) using the full Procrustes means. First column indicates the direc-
tion of the comparison, with A representing the sample of landmarks for
Gorilla gorilla berengei, and B that for Gorilla gorilla gorilla. Remaining
columns are the weights assigned to each landmark using formula (7).
T he standard deviations of the bootstrap distributions of these weights
are given in parentheses below each weight. T he means of these bootstrap
distributions are not given because they were not significantly diVerent

from the recorded sample values.

      

AB 0·5282 0·2171 0·2533 0·1896 0·8279 0·3583 0·7114
(0·0398) (0·0601) (0·0451) (0·0791) (0·0703) (0·1095) (0·0874)

BA 0·5409 0·2220 0·2632 0·1981 0·7995 0·3647 0·7117
(0·0342) (0·0671) (0·0487) (0·0824) (0·0641) (0·1136) (0·0956)

The motivation for studying this dataset was to consider whether or not there have
been significant adaptations in the bony morphology of the upright spine to differing
positional behaviours in non-human primates. Our conclusions about landmark influence
can be interpreted in terms of the differing mechanical demands placed on the cervical
spine by different behaviours. The principal feature in Table 1 is the relatively large weight
attached to the landmarks ,  and . In Gorilla gorilla gorilla the relative length
of the spinous process compared to the size of the vertebral body is greater than that in
Gorilla gorilla berengei, and the posterior tubercle is, relatively, extended, and is rotated
anteriorly. These observations are consonant with common-sense mechanical interpret-
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ations of the demands placed on the vertebrae through the differing positional behaviours
of the two species.
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