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THE TRUSS: BODY FORM RECONSTRUCTIONS IN
MORPHOMETRICS!*?

RICHARD E. STRAUSS AND FRED L. BOOKSTEIN

Abstract

Strauss, R. E., and F. L. Bookstein (Museum of Zoology, The University of Michigan, Ann
Arbor, Michigan 48109) 1982. The truss: body form reconstruction in morphometrics. Syst.
Zool., 31:113-135.—In principle, any measured distances between landmarks of a form may
serve as characters for morphometric analyses. Systematic studies typically are based on a
highly biased and repetitious sample of these. But collections of landmarks and the distances
among them must be homologous from form to form for comparisons to be meaningful, and
an adequate character set should at least permit the full reconstruction of the original config-
uration of landmarks.

We describe a geometric protocol for character selection, the truss network, which enforces
systematic coverage of the form and which exhaustively and redundantly archives the land-
mark configuration. Reconstruction of the form from truss measures provides Cartesian co-
ordinates for landmarks and allows estimation of, and compensation for, measurement error.
Samples of forms may be averaged and standardized to one or more common reference sizes
by regression of measured distances on a composite measure of body size, followed by re-
construction of the form using distance values predicted by the regression functions at some
standard body size.

Principal component loadings of distance measures may be indicated directly on the truss
network to display patterns of within-group allometry or between-group shape differences.
Because the truss enforces use of cross measurements, discrimination among groups may be
enhanced. Composite mapped forms are useful in biorthogonal analyses of differences in
shape because they allow the comparison of averaged forms among samples. Certain patterns
of principal component loadings are concordant with, and provide an initial sampling of, the
biorthogonal grids for these deformations. [Allometry; biorthogonal analysis; discriminant
analysis; fishes; morphometrics; multivariate analysis; principal components; triangulation;

truss.]

Systematists are often interested in
quantifying differences in form among
different species, conspecific popula-
tions, or ontogenetic stages. Customarily,
morphometric data are taken without re-
gard for allometry or its variations among
populations or growth stages. It has been
common to study growth, for example, by
analysis of body length or height or
weight only; to describe the shapes of
bones by measures of their lengths and

1A contribution of the Morphometrics Study
Group, University of Michigan: Fred Bookstein,
Barry Chernoff, Ruth Elder, Julian Humphries,
Gerald Smith, and Richard Strauss.

2 An earlier version of this material was presented
at the Symposium “Morphometric Studies of Fish-
es, Amphibians, and Reptiles,” American Society of
Ichthyologists and Herpetologists, Corvallis Ore-
‘gon, June 1981.

widths; to characterize entire forms by
relative lengths and breadths of head,
trunk, tail, and appendages. Although
such measures are deeply entrenched in
the methodology of systematics, their
usefulness in solving real biological
problems may be limited. There are far
more homologous measures on biological
forms than are used in typical multivari-
ate data sets (Humphries et al., 1981), and
results of morphometric analyses can de-
pend upon the particular set of measure-
ments chosen. If the selection of distance
measures does not correspond by acci-
dent or design to the principal directions
of shape difference, the resulting de-
scriptions of the differences between
forms will be inadequate.

There are several biases and weak-
nesses inherent in traditional character
sets such as those in our Figure 1 or in

113
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FIG. 1.—A “traditional” set of distance measures,
one used by Strauss (1980), which is typical of char-
acter sets used in studies of fishes and other organ-
isms. Dotted lines represent projections of the mea-
surements onto the midsagittal plane. Small circles
represent measures of body width.

Humphries et al. (1981; Fig. 1). They may
be summarized as follows. (1) Most char-
acters tend to be aligned with one of a
very few axes, such as the “longitudinal,”
with only scant sampling of depth and
breadth. Thus a large amount of infor-
mation in the data is repetitious while
other information, variation in oblique
directions, is lacking. (2) Coverage of the
form is highly uneven by region as well
as by orientation: dense in some areas of
the body and sparse in others. (3) Some
morphological landmarks, such as the tip
of the snout and the posterior end of the
vertebral column, are used repeatedly.
Any uncertainty in the positions of these
morphological features will be propagat-
ed through series of measurements. (4)
Many landmarks are “extremal” rather
than “anatomical” (sensu Moyers and
Bookstein, 1979). Anatomical landmarks
are true homologous points identified by
some consistent feature of the local mor-
phology (Jardine, 1969; Schaeffer, 1976).
Extremal landmarks are defined in terms
of minimum or maximum distances (e.g.,
greatest body depth), and therefore their
placement may not be homologous from
form to form. (5) Many measurements ex-
tend over much of the body. Because short
distances contain more localized infor-
mation than long ones, covariances among
long characters express average covaria-
tion and are less informative. (6) When
measurements are taken on soft-bodied

organisms, the amount of distortion due
to preservation cannot be easily estimat-
ed. The repeatability of individual mea-
surements can be checked, but one can-
not determine what the measure would
have been if the specimen had been pre-
served differently.

Multivariate morphometrics offers no
system for selecting characters to be stud-
ied other than that they be numerous and
sample the whole form. Consequently,
traditional data sets often turn out to be
highly biased in many of the ways de-
scribed above. Success in selecting effec-
tive characters has been largely a matter
of chance (Bookstein, 1982). In this paper
we propose a geometric protocol for char-
acter selection which largely overcomes
the disadvantages of traditional data sets
and leads logically to certain styles of
analysis. The method allows us to: (1)
systematically detect shape differences in
oblique as well as horizontal and vertical
directions, using a system of measures that
ensures generally even coverage of the
landmark configuration; (2) archive the
configuration of landmarks so that the
form may be reconstructed (mapped) from
the set of distances among landmarks; (3)
recognize and compensate for random
measurement error; (4) average the forms
of a sample of individuals, permitting us
to compute and illustrate average shapes;
(5) succinctly characterize and visualize
multivariate trends of growth and al-
lometry within populations; and (6) stan-
dardize forms for intergroup comparison,
particularly for biorthogonal analyses of
shape differences.

ARCHIVING THE FORM

For any set of homologous landmarks
on an outline (as of the midsagittal plane
of a fish), there are several possible pat-
terns of distances among the landmarks
that may be used to reconstruct the form
(Mikhail, 1976). The simplest is triangu-
lation. When the measured distances
among landmarks are chosen to form a,
series of contiguous triangles (Fig. 2A),
the set of measurements can be used to
map the coordinates of the landmarks
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A. TRIANGULATION 2n-3

distances

B. TRUSS 5n/2 - 4

distances

C. GLOBAL REDUNDANCY  3(n-2)

distances

FI1G. 2—Possible patterns of distances, among 10 (=n) coplanar landmarks, which completely archive
the landmark configuration. (A) A triangulation network. (B) The box truss. (C) A “globally redundant”
design patterned after Rohlf and Archie (1978).
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FIG. 3—Mapping Cartesian coordinates of landmarks by triangulation. (A) The first landmark is desig-
riated to be the origin of the coordinate system, and the line connecting the first two landmarks to be the
abscissa. The third landmark is positioned at the intersection of two circles, centered on the first two
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(Fig. 3). The number of measures to be
taken for a triangulation network in-
creases as 2n, twice the number of land-
marks. Triangulated patterns are useful
for descriptive measurements whether or
not figures are meant to be reconstructed
(Olson and Miller, 1958, fig. 55; Skalak et
al., 1982). However, an important prob-
lem attends the sequential mapping of
coordinates by triangulation: small mea-
surement errors are propagated as distor-
tion throughout the form, so that the po-
sitions of the final landmarks can be
unreliable.

The accuracy of the mapping could be
improved if redundant distance measure-
ments for each landmark were used to av-
erage the effects of random measurement
error. Such a system was described by
Rohlf and Archie (1978) to map land-
marks (in their case, the positions of trees
in a forest) using repeated measurements
of distances among them. In their system
any three landmarks are chosen for a bas-
al reference triangle. Distances are then
measured from each additional landmark
back to any three previous ones (Fig. 2C).
From these data, initial estimates of land-
mark coordinates can be established by
triangulation. However, because each
landmark sits at the apex of one or more
extra triangles, the redundant measure-
ments can be used to calculate an average
set of coordinates by means of iterative
least-squares. The technique can map
landmark coordinates with a precision
greater than that inherent in the original
distance measures. The number of mea-
surements needed increases as 3n, which
is still much less than the n(n — 1)/2 dis-
tances distributed among all possible
pairs of landmarks (which increases as n?).

A systematic pattern of measurements
intermediate between these two is the box
truss (Fig. 2B). In this system, homolo-
gous landmarks on the boundary of the

form are divided into two tiers and paired.
[There may be a single landmark left over
at one end or the other.] The distance
measures connect these landmarks into
an overdeterminate truss network, a se-
ries of contiguous quadrilaterals each
having both internal diagonals. Each
quadrilateral shares one edge with the
preceding quadrilateral and another with
the succeeding one. In this way we add
approximately one extra distance mea-
sure to a triangulated network for each
four measures previously present. Paired
landmarks at the ends of the truss net-
work lie at the apex of three triangles;
other paired landmarks lie at the apex of
six triangles. This modest but systematic
redundancy allows for checks on the con-
sistency of the measurements (as de-
scribed below). The extra distances per-
mit the positions of mapped landmarks to
be averaged, limiting the accumulation of
measurement error. If landmarks are
spaced suitably on the outline, the pat-
tern of measurements will approach an
idealized square truss (Fig. 4A), for which
the expected confidence region for each
landmark is smallest. The number of
measurements required for the truss
without unpaired landmarks is 5n/2, mid-
way between the 2n characters of the
triangulation and the 3n characters need-
ed for Rohlf and Archie’s “globally re-
dundant” system. The pattern ensures
balanced coverage across the form and can
be applied to various projections which
together account for 3-dimensional as-
pects of shape (Fig. 4B, 4C).

ADJUSTMENT FOR MEASUREMENT ERROR:
FLATTENING THE TRUSS

For each quadrilateral of the truss net-
work there are six distances (four edges
and two diagonals) among four landmarks
(Fig. 5A). For the landmarks to be pre-
cisely coplanar, these distances must sat-

—

landmarks, whose radii are its distances to these landmarks. (B) The fourth landmark is then mapped in
relation to the second and third landmarks. The procedure is continued across the form until coordinates

have been assigned to all landmarks.
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Fic. 4—(A) An idealized square truss for 10 landmarks. (B) A truss network of distance measures applied
to 10 midsagittal landmarks of a sculpin (Cottus). (C) A single truss cell with two appended triangles,
applied to the dorsal projection of the same organism.
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FI1G. 5.—(A) A single truss cell consisting of four
landmarks connected by six distance measures. (B)
If the six distances do not satisfy Salmon’s criterion
of planarity, they will instead describe a three-di-
mensional tetrahedron. (C) For any set of five dis-
tances, the minimum permissible value of the sixth
(dotted line) is the distance between the apices of
two coplanar triangles lying on the same side of
their shared edge (heavy line). (D) For the same set
of five distances, the maximum permissible value
of the sixth (dotted line) is the distance between
the apices of two coplanar triangles lying on op-
posite sides of their shared edge (heavy line). If the
length of the sixth distance is intermediate between
these two extremes, the six distances describe a tet-
rahedron. If the sixth distance is beyond these ex-
tremes, the tetrahedron is imaginary.

isfy a single equation—the determinant
of the following matrix must be exactly
zero (Salmon, 1914, vol. 1:47):

0 1 1 1 1

1 0 d* dis® dy?
1 dp? 0 dpy? dp?
1 dy? dp2 0 dg?
1 d,2 dp? d3® O

Here d;;? is the squared distance between
landmarks i and j, and V is the volume of
the tetrahedron they determine. Because
these measurements will often be taken
with calipers on soft-bodied, hand-held
specimens, it is unlikely that the six dis-

= 288V?

tances will exactly satisfy Salmon’s cri-
terion of planarity even though the land-
marks would ideally lie in a single plane
(e.g., the midsagittal). The distances will
instead correspond to the six edges of a
tetrahedron with some measurable vol-
ume (Fig. 5B). The mapping of land-
marks then becomes a matter of flattening
the tetrahedron by adjusting the six dis-
tances until the landmarks become co-
planar.

Any five of the six distances exactly
specify two coplanar triangles sharing an
edge. We need not identify any particular
one of the six distances (edge or diagonal)
in a quadrilateral as the “extra” one. Giv-
en any five distances, the sixth must take
one of two values, depending on whether
the triangles are on the same side of the
shared edge (Fig. 5C) or on different sides
(Fig. 5D). For each of the six sets of five
distances, the sixth distance will vary by
measurement error (its own plus that due
to error in the other five distances) from
the exact value forced upon it by this
planar construction. If the sixth length as
measured is between the extremes of the
two lengths indicated in Figures 5C and
5D, one can imagine this distance to be
that of the real edge of a tetrahedron made
up of the two trianges hinged along their
common edge (Fig. 5B); the tetrahedron
is the same for all choices of five edges
out of six. The tetrahedron cannot be
drawn if the length of the sixth edge is
beyond either extreme, just as no triangle
can be drawn with one edge-length great-
er than the sum, or less than the differ-
ence, of the other two; the “angle” at the
hinge in this case is imaginary, and the
squared volume according to the preced-
ing determinant is negative.

Cell by cell, whether or not there is a
real tetrahedron to be flattened, we may
compute the exactly planar configuration
that minimizes the sum-of-squares 2$ (d —
d)? between the measured distances and
the edges and diagonals of the flat recon-
struction. This optimization is managed
for us by the subroutine ZXSSQ from the
International Mathematical and Statisti-
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cal Library of numerical software (IMSL,
1977). The fitted planar quadrilateral will
preserve 3§ d, the sum of the lengths in
each cell, while balancing error-of-fit
about all six distances. If one edge is
grossly mismeasured, the fitted quadri-
lateral will show a pattern of compensat-
ing alterations in all the other distances.

Each pair of landmarks at which two
quadrilaterals abut will likely be adjust-
ed to different distances in the two sep-
arate quadrilateral adjustments involving
them. In the assembly of the final config-
uration this discrepancy, which is usually
quite small, can be compromised in the
following way. The first quadrilateral is
laid down arbitrarily, with its lower left
landmark positioned at coordinate (0,0).
Each succeeding quadrilateral is then se-
quentially adjoined to its predecessor
such that the midpoints of the shared
edges are superimposed and the edge di-
rections aligned. This superimposition
continues to approximately preserve the
sum of the truss distances, and adds least
error to the distances computed for those
edges separately (at slight cost in net ac-
curacy for the horizontal and diagonal
segments).

The reconstruction of an entire truss in
this way closely approximates a global
best-fit that is feasible but much more ex-
pensive to compute. Propagation of errors
from cell to cell (e.g., Fig. 6:4) is much
less extensive than for triangulation with-
out redundancy. The cross-measures we
take tend to be not only shortest but also
most nearly at 45° to the anteroposterior
and dorsoventral measures, and therefore
bear the most additional information. The
longer distances that might be used to
augment a globally redundant best-fit,
such as diagonals 1-6, 2-5, or 3-10 (Fig.
4), neither add much further stiffness to

the reconstruction of forms as elongated
as the fishes we study, nor contribute
much additional information to subse-
quent morphometric analysis. Their load-
ings are extended averages of coefficients
already quantified locally.

Figure 6 shows five specimens of the
freshwater sculpin Cottus cognatus for
which the landmarks have been mapped
by this reconstruction. All except the
fourth are reasonable approximations to
the form of a fish. The apparent distortion
of this individual is the result of a.gross
measurement error which was immedi-
ately obvious once the figure was drawn.
Many such errors, especially those re-
sulting from misreadings of calipers, ocu-
lar micrometers and other measuring
devices, may go undetected in morph-
ometric studies even when they result in
outliers on scatter plots or histograms.

Substantial measurement errors will be
exposed when the form is drawn, while
more subtle errors may be revealed by
measures of the mutual inconsistency of
the data. A useful measure of such
“strain,” adjusted for the varying sizes of
the cells, is the relative discrepancy be-
tween measured and reconstructed dis-
tances, (d — d)/d. (Note that this is not
quite the quantity which is minimized in
the flattening.) This statistic, computed for
each distance measure, may be aggregat-
ed to describe the strain for each quad-
rilateral, each specimen, or for a sample
of forms. One satisfactory net measure of
strain is the root sum-of-squares of these,
V32 (d — d)/dP, for all the distances of a
truss. A second useful measure of strain,
at the level of the cell rather than the
edge, might be the volume V of the tet-
rahedron before it is flattened, scaled by
the 1.5 power of the flattened area. Many
others are possible.

-

FiG. 6.—Mapped landmark configurations for five specimens of the sculpin Cottus cognatus. Landmarks
are those indicated in Figure 4B. The body form of the fish in relation to these landmarks is indicated on
the fifth figure. Total strain is a measure of the mutual lack of fit of the original distance measurements;
it is the square root of the sum of the squared relative deviations of the distances in the mapped form

from those originally measured.
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TABLE 1. STRAIN STATISTICS FOR THE FIVE TRUSSES OF FIGURE 6.
Distance measures®

1-2 1-3 2-3 1-4 24 34

34 35 45 3-6 46 56

56 57 6-7 58 6-8 7-8
Specimen Cell 7-8 7-9 89 7-10 8-10 9-10 RSS?
1 1 —.007 —.001 .004 .005 —.004 .005 .012
2 .005 .012 -.018 -.018 .018 .010 .036
3 .010 .005 -.002 —.005 .004 -.016 .020
1-3 041
4 -.016 —.034 .048 .048 —.067 —.059 118
14 124
2 - 1 .003 .001 —.001 —.001 .002 .001 .004
2 .001 .002 —.002 -.002 .003 .004 006
3 .004 .019 —-.012 -.017 .008 .005 .030
1-3 .031
4 .005 —.007 .025 .025 —-.038 —.026 .058
14 .066
3 1 .008 .002 —.003 —.005 .008 .004 .013
2 .004 .006 —-.010 —.009 .011 .005 .019
3 .005 —.002 .002 .002 —.001 -.010 .011
1-3 .025
4 —-.010 —.008 .014 .015 —-.024 -.013 .036
14 .043
4 1 011 .001 —-.011 -.010 .004 -.033 .038
2 —.033 —-.090 .078 - .078 —.062 —.042 .164
3 —.042 .007 —.009 —.005 —.004 -.010 .045
1-3 .166
4 -.010 -.013 .027 .029 —.048 —-.027 .072
14 .180
5 1 .015 .003 —.005 —.008 .010 —.002 .021
2 —.002 —.004 .008 .008 —-.010 —.004 .016
3 —.004 .000 .000 .000 —.001 -.010 .010
1-3 .027
4 —-.010 —-.008 .016 .018 —.032 -.015 .044
14 .051

! The value for each distance measure (identified by the landmarks it connects) is the difference between the original measure and the
corresponding distance on the final mapped configuration, scaled by dividing by the original measure.
2 Net strain for each cell is the root sum-of-squares (RSS) of the six strain values. Net strain per form is the RSS of 16 or 21 strain values.

For example, the distance deviations
(Table 1) for the trusses of Figure 6 in-
dicate that the distortion of the fourth
specimen may be the result of a mea-
surement error for the lower horizontal
element (between landmarks 3 and 5) of
the second truss cell. In fact, this distance
was mismeasured by approximately —9%;
the lengths of the other distances in the
cell were adjusted to compensate for this.
The values of strain also reveal that for
all five specimens the positions of land-
marks 9 and 10 are somewhat uncertain,
resulting in inconsistencies among the
measures involving them. In such cir-

cumstances the affected truss cell might
be excluded from subsequent analyses.
As a second example of the use of such
statistics, we have plotted against a com-
posite measure of body size the total strain
per individual for data from 43 specimens
of another sculpin, Cottus klamathensis
(Fig. 7). Although only a slight relation-
ship of imprecision of measurement to
body size is evident,? there are obviously

3In the absence of measurement imprecision,
strain is expressing nonplanarity of the original con-
figuration of landmarks, and so would not be ex-
pected to correlate with specimen size.
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FIG. 7.—A scatter plot of strain (mutual lack of fit of the data) per individual against a composite measure
of body size, for 43 specimens of Cottus klamathensis. Body size is the score on the first within-group
principal component of the covariance matrix of log-transformed distances. Reconstructed forms are shown

for the two specimens having the best and worst fit.

several individuals for which the data fit
poorly. The three data points of highest
strain corresponded to specimens for
which either caliper settings were mis-
read or keying errors were made. Values
of strain for each distance measure within
the forms again indicated the particular
measures which were in error.

To test the degree to which the least-
squares mapping procedure corrects for
imprecision of measurement, we took data
on a single specimen of Cottus cognatus
to the nearest 20th of a millimeter, the
usual resolution of measurement, and
mapped them to reconstruct the form. The
data were then remapped after being
rounded to the nearest millimeter (Fig.
8). The strain estimate for the less precise
data is twice that for the data as originally
measured, 0.121 vs. 0.073, but the result-
ing forms are virtually identical. We then

repeated the procedure for nine more
specimens. Figure 9 is a scatter of the
Cartesian coordinates of the ten individ-
uals mapped at the lower precision (mean
strain, 0.103) against the same coordi-
nates mapped at the higher precision
(mean strain, 0.058). If the mapped forms
were identical over the refinement, the
points would lie exactly along the 45°
lines of equality. In fact, even though the
strain is consistently greater for the less
precise data, the points lie very close to
this line; the slight distortion created by
rounding off the data is corrected by the
least-squares algorithm.

COMPUTING AVERAGE SHAPES AND
CHARACTERIZING GROWTH TRENDS

Thus, the truss network can be used to
map landmarks effectively by “relaxing”
nonplanarities. We propose using this
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Reconstruction at higher precision

Strain = 0.073

Reconstruction at lower precision

Strain = 0121

FiG. 8. —Reconstructed truss networks for a single
specimen of Cottus cognatus. Measurements were
originally taken to the nearest 0.05 mm (higher pre-
cision), and then rounded to the nearest 1 mm (low-
er precision).

truss system to produce single represen-
tative forms for subsequent descriptive
analyses by averaging within-sample size
and shape variation. There are five steps
to this procedure.

(1) Choose landmarks on the body outline and con-
nect them appropriately with line segments to
form a truss network.

(2) Measure these distances on a sample of indi-
viduals (and check them by individual truss re-
constructions).

(3) Diagnose the effects of body size and allometry
on the measured truss characters by log-linear
regressions of the measured distances upon some
composite measure of body size (Fig. 10).

(4) Choose a “standard” body size and compute the
predicted values of all the distances, as esti-
mated by the log-linear regression functions, at
that size.

(5) Map the coordinates of the landmarks by using
the predicted distances in the mapping proce-
dure described in the previous. section. When
the standard size is a population average, we
have produced an average form by reconstruc-
tion from the average measurements.

The composite size measure used in
steps 3 and 4 could be the first within-
group principal component of the covari-
ance matrix of the log-transformed dis-
tances (Jolicoeur, 1963). This is the latent
(unmeasured) variable which optimally
describes the joint log-linear covariation

3
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F1G. 9.—Scatter plots of the Cartesian coordinates
of reconstructed truss networks for 10 specimens of
Cottus cognatus. In all the reconstructions, land-
mark 1 was set to the origin and landmark 9 placed
along the x-axis. Measurements were originally tak-
en to the nearest 0.05 mm (higher precision), and
then rounded to the nearest 1 mm (lower precision).
If the mapped forms were identical over the change
in precision, the points would lie exactly along the
45° lines of equality. Axis scales differ for the two
plots. The mean-square errors (MSE) of the regres-
sions are approximately equal.

in all distance measures simultaneously
(Bookstein, 1982).* Removal of size vari-

4 One might also use the log mean truss-element
length, log(%d/21), as it is approximately invariart
under the operation of flattening the truss. Itis very
highly correlated with the usual first principal com-
ponent, but may be calculated for each individual
without considering the rest of the population.
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F1G. 10.—Illustration of a regression method for standardizing size. The logarithm of each truss measure
(connecting landmarks i and j) is regressed on some composite log-scale measure of body size S. The
predicted length at a standard size is transformed back to the original scale of measurement. The entire
set of predicted truss-element lengths is then used to reconstruct the averaged form.

ation by univariate regression has some
disadvantages (Humphries et al., 1981),
primarily because the resulting character
adjustments are not necessarily optimal
for, or even concordant with, trends of
character covariation. Nevertheless, be-
cause the mapping algorithm will effec-
tively recover the most reasonable aver-
age configuration and the strain statistics
provide measures of the discord, univar-
iate regression is appropriate in this con-
text. The procedure results in a compos-
ite geometric form which represents the
average form of a sample of individuals,
standardized to some arbitrary body size,
which can be drawn, examined, and com-
pared with others.

Because the standard size chosen for
the composite form is arbitrary, it may be

varied to allow a direct comparison of
body shapes at different sizes. Illustrated
in Figure 11 are averaged forms for two
closely related species of western North
American sculpins, Cottus pitensis and
Cottus klamathensis, at three different
composite body sizes scaled in terms of
the original unit of measurement (milli-
meters). A change in standard size alters
all distance measures simultaneously,
each at its own allometric rate. By “grow-
ing” the form of each species we display
the composite change in form resulting
from allometric influences of body size
on shape.

We may depict the same shape changes
in a different style of diagram by indicat-
ing for each truss element its within-group
allometric coefficient with respect to
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Cottus pitensis Cottus klamathensis
N=2I N=43
Strain=0.076 Strain=0.143
0.038 0.06l
0.096 0.020
6 . 75mm

FIG. 11.—Averaged forms for two species of Cottus at three different composite body sizes. Recon-
structed forms are scaled in millimeters and represent body lengths of approximately 45, 64, and 81 mm.

overall body size (Humphries, in press;
Chernoff and Miller, in press). These in-
dividual regression coefficients are the
same as the loadings of the log-distances
on this estimate of body size. We first
scale them to a mean-square of 1.0. A
variable growing isometrically with “size”
(as defined by this set of variables) then
bears a loading of 1.0. Loadings greater
than 1.0 denote positive allometry while
loadings less than 1.0 indicate negative
allometry. Compared in this way (Fig. 12),
the growth patterns of Cottus klamath-
ensis and C. pitensis are notably differ-
ent. (We will draw their comparison in
Fig. 15 below.) Because the allometric
coefficients are derived from a sample of
individuals each measured once, they do
not strictly represent patterns of growth
(Gould, 1966). However, these patterns
of multivariate allometry among individ-
uals seem to account for changes in form

within samples and for differences in
shape between taxa.

INTERGROUP COMPARISONS

Because the truss configuration covers
the form more completely than do tradi-
tional character sets, it can considerably
enhance discrimination among groups
when the differences are not specific to a
very few structures. Figure 13 contrasts
the effectiveness of the two styles of mea-
surement. The truss network again con-
sists of the 21 midsagittal distances of
Figure 4B. The other character set con-
sists of the measurements shown in Fig-
ure 1, with the exception of pelvic-fin
length, which is not inside the body out-
line, and the two measures of body width,
which are not measured in the lateral
projection—a total of 19 characters. Both
sets of distances were measured on the
same 64 specimens, 21 of Cottus pitensis
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' F16. 12.—Within-group patterns of allometry for two species of Cottus. Allometric coefficients are the
loadings (scaled to a mean-square of 1.0) of the truss measures on the first within-group principal com-
ponent (covariance matrix, log-transformed data). Coefficients greater than 1.0 indicate positive allometry;

those less than 1.0 indicate negative allometry.

and 43 of C. klamathensis. Five truss dis-
tances (3-4, 4-6, 5-7, 6-8, and 9-10) are
shared with the traditional set; the dis-
tance 1-3 (that from the snout to the base
of the pelvic fins) is not equivalent to the
length from snouth to pectoral-fin base.
In separate principal component anal-
yses, each pooling the two samples, the
sheared second component, independent
of size within groups (Humphries et al.,
1981), is plotted against the first among-
group principal component, which ex-
presses mostly body size. Had we instead
used a discriminant function to maximal-
ly separate the groups, we would have
sacrificed the interpretability of the coef-

ficients (Campbell and Atchley, 1981;
Oxnard et al., 1981). The scores on the
sheared second component are highly
correlated with those on the discriminant
axis when the mean body size of the two
groups is the same; however, the load-
ings on the sheared component are di-
rectly interpretable with respect to shape
differences.

The loadings (Table 2) on the sheared
second component of the truss data may
be depicted directly on the network (Fig.
13C). The primary contrasts on the form
are between positive longitudinal load-
ings, which indicate that for a given body
size C. pitensis is relatively longer than
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F1G. 13.—Principal component analyses of two character sets on the same 64 specimens, 21 of Cottus
pitensis (solid circles) and 43 of Cottus klamathensis (hollow circles). Characters are listed in Table 2.
(A) Scatter plot of the sheared second principal component, calculated with the algorithm of Humphries
et al. (1981), against the first among-group principal component of the traditional data set. (B) Scatter plot.
of the sheared second principal component against the first among-group principal component of the truss
data set. (C) Loadings of the truss measures on the sheared second component, describing the differences
in size-free shape between C. klamathensis and C. pitensis. In (A) and (B), percentages along the axes
represent variances explained by the original principal components.

C. klamathensis, and some of the nega-
tive diagonal and vertical loadings, which
show C. klamathensis to be relatively
deeper bodied than C. pitensis. In par-
ticular, the distances with highest nega-
tive loadings are those that are postero-
ventrally oblique in the head and
midbody regions and posterodorsally
oblique on the peduncle.

The truss network provides better dis-
crimination between the two species than
does the traditonal system. This demon-
strates the potential fallacy of concluding
that two groups are the same simply be-
cause an analysis based on a particular
data set has not shown them to be differ-
ent. The principal directions of shape dif-
ference are largely unsampled by the tra-

ditional character set except by the
measures of maximum body depth and
minimum peduncle depth, both of which
have high negative loadings on the
sheared component (Table 2). Thus, the
truss method improves shape discrimi-
nation by enforcing the use of cross mea-
surements often not considered.
Composite mapped forms are particu-
larly conducive to biorthogonal analyses,
which allow quantitative comparison of
forms by revealing the principal direc-
tions of shape difference (Bookstein, 1978,
1982). The procedure models the differ-
ence in shape as a smooth deformation of
a grid in the manner of Thompson (1961),
a mapping of one form onto the other in
accordance with biological homology. We
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TABLE 2. PRINCIPAL COMPONENT LOADINGS OF TWO DIFFERENT CHARACTER SETS FOR SAMPLES OF
CorTUS KLAMATHENSIS (N = 43) AND C. PITENSIS (N = 21).

Traditional character set* Truss character set®
Character 1 Sheared 11 Cell Character I Sheared 11
1 1-2 021 041
1-3 0.22 0.21
2-3 0.23 -0.20
14 0.22 041
24 0.23 —0.02
Maximum body depth 0.24 -0.18 2 34 0.22 -0.11
3-5 0.24 0.24
4-5 0.23 -0.13
3-6 0.23 0.05
Length first dorsal fin base 0.23 0.14 4-6 0.24 0.20
3 5-6 0.21 -0.10
Length anal fin base 0.20 0.14 5-7 0.20 0.26
6-7 0.21 0.13
5-8 0.21 -0.01
Length second-dorsal fin base 0.22 0.19 6-8 0.20 0.18
4 7-8 0.23 -0.29
7-9 0.19 0.07
8-9 0.19 —-0.03
7-10 0.21 -0.26
8-10 0.18 0.03
Least depth caudal peduncle 0.23 —-0.65 9-10 0.23 -0.42
Head length 0.21 0.05
Postorbital head length 0.22 0.11
Eye diameter 0.17 -0.19
Premaxilla length 0.25 0.25
Maxilla length : 0.26 0.21
Length first-dorsal fin
to caudal base 0.24 0.12
Length second-dorsal fin .
to caudal base 0.23 0.18
Length anal fin to caudal base 0.22 0.11
Length snout to pectoral base 0.23 -0.04
Length pectoral fin margin
to caudal base 0.24 0.08
Length depressed second-dorsal fin 0.23 0.28
Length depressed anal fin 0.22 0.20
Standard length 0.21 0.23
Total length 0.23 0.28

! The traditional characters include all measurements shown in Figure 1 except pelvic-fin length and the two measures of body width.
% The truss characters are those of Figure 4B, identified by the landmarks they connect.

describe the deformation by its effect on of homologous grid elements; since all
a particular coordinate system (the angles with the grid are forced to remain
biorthogonal grid) whose elements inter- unchanged in the deformation, the ob-
sect at 90° in both forms. The method re- served change in shape is described by
duces changes in shape to changes in size the dilatations (relative stretch or shrink)



130

SYSTEMATIC ZOOLOGY

VvOL. 31

of homologous grid elements. Because the
deformation is assumed to be smooth, the
dilatations increase or decrease in gradi-
ents along the curves of the grid.

The pattern of shape difference be-
tween C. klamathensis and C. pitensis is
clearly revealed by a biorthogonal anal-
ysis of the transformation (Fig. 14). The
outlines for this analysis are the averaged
forms for the two samples, standardized
to a common body size. The curves on
the forms are an arbitrary sampling from
the biorthogonal grid, and the differences
in the grid patterns quantify the defor-
mation required to transform one form
into the other. The curves of the grid rep-
resent the primary directions of shape
change at their points of intersection, the
directions of greatest local expansion and
contraction. The samples of dilatations
along the curves are the ratios of homol-
ogous grid-element lengths at those points
in the two forms. The ratio of lengths to
the boundary in these two directions from
any point is the mensural character which
best discriminates the forms in reference
to that point. Dilatations oblique to the
axes of the grid may be interpolated ac-
cording to the formula

8%(0) = 8,2c0s%0 + 8,%sin%0

where 0 is the angle between the oblique
length-element and the principal axis of
dilatation §;.

In our example, the directions of max-
imum elongation, with dilatations greater
than 1.0, are along the more-or-less hor-
izontal grid lines; the pattern indicates
that C. pitensis is relatively longer than
C. klamathensis at this standardized body
size, but that the direction of elongation
is not strictly longitudinal. Dilatations

along the somewhat vertical grid lines are
all less than 1.0, showing that the change
in shape from C. klamathensis to C. pi-
tensis is a change from a deep-bodied to
a shallow-bodied form. In particular, the
greatest differences in body depth are
posteroventrally oblique in the head, ver-
tical in the midbody, and posterodorsally
oblique in the tail. The pattern of defor-
mation is concordant with the pattern of
loadings of truss elements on the sheared
second principal component (Fig. 13C).
The traditional character set is consistent
with this grid as well, but does not sam-
ple it so locally nor allow reconstruction
of the predicted forms.

Because the species grow differently,
the comparison of these forms is to some
extent a function of the size standard cho-
sen. The difference between the separate
growth trends of the two species (Figs.
11 and 12) may itself be visualized by
“growing’ a truss according to the differ-
ence between the two sets of allometric
coefficients. In this way we may deform
the averaged 64-mm C. klamathensis (Fig.
15A, top) into the form (Fig. 15A, bottom)
for which all truss elements are altered
according to the differences in predicted
allometric growth over a size change of
25% (64 mm to 51 mm). That is,

log d;y = log d;x + 0.25A,,

where dix is a truss distance on the av-
eraged 64-mm C. klamathensis figure, diy
is the distance of the same truss element
on the modified form, and A; is the cor-
responding difference between the allo-
metric coefficients of the two species (Fig.
12). The resulting deformation, which is
the effect of 13 mm of change in body
length upon the shape comparison, may

—

FIG. 14.—Biorthogonal analysis of the transformation from an averaged form of Cottus klamathensis to
an averaged form of Cottus pitensis of the same body size. (A) An arbitrary sampling of curves from the
biorthogonal grid, the elements of which intersect at 90° in both forms. The curves represent the primary
directions of shape change, one of maximum stretch and one of maximum shrink, at their points of inter-
section. (B) A sample of dilatations along the grid lines describing the directions of maximum elongation.
A dilatation of 1.10 indicates an increase of 10 percent. (C) A sample of dilatations along the grid lines
describing the directions of maximum contraction. A dilatation of 0.90 indicates a decrease of 10 percent.
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be expressed in a biorthogonal grid for
the difference between the two trends
(Fig. 15; compare with Fig. 12). The grid
for comparison of the fishes at any size
other than that used in Figure 14 is the
product of the grid in Figure 14 by an
appropriate multiple of the one in Figure
15. The rules for this manipulation are
indicated in Bookstein (1982).

In its original formulation, the biorth-
ogonal method was limited to compari-
sons of single pairs of forms, usually in-
dividuals taken to be representative of
populations. Application of the truss net-
work overcomes this limitation: the use
of composite averaged forms is prefera-
ble to the use of single individuals in de-
scribing differences in shape among pop-
ulations. In addition, because the truss
systematically samples variation in many
directions (every 45° in a square truss
network), the set of ratios of homologous
elements in two forms includes one dil-
atation within some moderate angle (in a
square truss, 22.5°) of each principal di-
rection of shape difference. The pattern
of loadings on the truss, interpreted as a
transformation, therefore provides an ini-
tial estimate of the biorthogonal descrip-
tion of the deformation.

CONCLUSIONS

The system of measurement and anal-
ysis we have described is based on two
premises: first, that collections of anatom-
ical points and the distance measures
among them must be homologous from
form to form, because only the biological
homology of two configurations makes
meaningful their scientific description
and comparison; and second, that an ad-
equate collection of measured distances

should at least permit the reconstruction
of the configuration of landmarks it pur-
ports to measure, since information is
otherwise lost. The truss network is a
geometric protocol which fulfills these
requirements and offers several addition-
al advantages. Its properties may be sum-
marized as follows.

(1) Use of the truss network as a charac-
ter set enforces systematic coverage
across the form; in contrast, tradition-
al character sets often provide highly
uneven coverage.

The truss exhaustively and redun-
dantly archives the form; hence, the
original configuration of landmarks
may be reconstructed by relaxing the
data so as to be coplanar and mapping
the Cartesian coordinates of the land-
marks.

The least-squares mapping proce-
dure is robust against moderate im-
precision of measurement. The de-
gree of measurement error in the data
may be assessed graphically and by
various indices characterizing the
mutual lack of fit of the data.

Forms may be standardized to one or
more common reference sizes by re-
gressing measured distances on some
composite measure of body size and
reconstructing the form using the dis-
tance values predicted at some stan-
dard body size.

Principal components can be given
geometrical interpretations. Compo-
nent scores are measures of configu-
ration, while loadings are descriptors
of shape change.

Composite mapped forms are suit-
able for biorthogonal analyses of
shape differences between forms.

2

3)

(4)

(5)

(6)

—

F1G. 15.—Biorthogonal grids for the effect upon the interspecific shape comparison, Figure 14, of a
change in body length from 64 to 51 mm. (A) An arbitrary sampling of curves from the biorthogonal grid
of the transformation from the averaged 64-mm C. klamathensis (above) to a modification of that form in
which all elements are altered according to the between-species differences in predicted allometric growth
over a size change of 64 mm to 51 mm. (B) A sample of dilatations along the grid lines describing the
directions of maximum elongation. (C) A sample of dilatations along the grid lines describing the directions

of maximum contraction.
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Patterns of loadings derived from
principal components of truss data are
consistent with such analyses. By
providing a systematic sampling of
variation in many directions, the truss
provides an initial estimate of the
biorthogonal description of the defor-
mation.

When this system of design and anal-
ysis is applied, the results of multivariate
analyses may serve a dual role (Book-
stein, 1982). (1) As patterns of loadings
they may suggest measures which are op-
timal discriminators between groups,
whether of growth stages or taxa. Because
we do not know at the outset of a study
what measures will ultimately emerge as
the optimal characters for analysis and
description, there is no point in presum-
ing their identities (e.g., specific angles
or proportions) from the beginning. We
instead begin with a character set which
is sensitive to variation in all directions,
and later extract the best simple mea-
sures that characterize the observed dif-
ferences. (2) As factors (Wright, 1954), the
results of morphometric analyses give rise
to expected values for all distances, ex-
pected values that change as “size” or
“taxon” changes. A change in the factor
may be interpreted explicitly as a trans-
formation, a change of form in accord with
biological homology. When the system of
linear measures permits a full reconstruc-
tion of the original landmark configura-
tion, the predicted values at any factor
score will be an archive of a predicted
form.
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