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4.1 Introduction

There are many situations in which biologists wish to compare morphology. These
include studies of normal and pathological variation, growth, and evolution. Each
presents its own morphometric challenges. In the study of the shapes of popula-
tions of cells, for example, there may be a lack of unequivocally definable equiv-
alent landmarks on which to base comparative measurements. In this case the in-
vestigator seeks morphometric methods that show little dependence on landmark
identification. In contrast, studies of variation in skull shape might be based on
landmarks that are equivalent between individuals in an evolutionary, develop-
mental, or functional sense. Thus, comparative data may be based upon the rela-
tive locations of these landmarks rather than upon the shape or curvature of the
outline itself.

In undertaking a morphometric study, one chooses, then, between methods that
describe forms in terms of landmarks or interlandmark distances, and those that
describe form with little or no reference to landmarks. There are, however, a large
number of other issues involved; these are, to a degree, dependent on the prob-
lem at hand and the particular questions being addressed. For instance, in choos-
ing landmarks, questions may arise concerning homology, the sampling of form,
and the types of measurements to be taken. Many alternative strategies are avail-
able and choosing between them requires some knowledge, not only of the biol-
ogy, but also of the morphometric issues concerning each approach.

Moderm desktop computers, digitizing tablets, frame grabbers, and 3-D digi-
tizing equipment allow many “new” types of data to be gathered. Therefore, it
becomes important to consider how each of these data types may be compared
between specimens, the limitations of each possible approach, and the extent to
which the use of different types of data might affect the outcomes of morpho-
metric investigations.
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This chapter will review a number of approaches to the quantitative description
of form, consider the differences between landmark-based and landmark-indepen-
dent approaches, and examine the issue of homology in relation to landmarks and
to boundary representations of forms with few or no landmarks. A large part of
this review will be devoted to Fourier analysis, since this is the theme of this book.
It is hoped that the discussion of Fourier analysis against a background of other
morphometric approaches will be useful in providing context and perspective.

Landmark-dependent approaches are considered first, and methods which are
less dependent on landmarks are discussed later. This is to some extent an artifi-
cial classification since landmark identification plays a part in the majority of
strategies that can be applied to form description. A brief description of each tech-
nique is followed by a consideration of the theoretical and practical problems as-
bUlelCU Wltl‘l it. This ulachr will pr V e a CTITIC 1 OVCT_VICW Ul Lﬂffeﬂtly dlel-
able tools for form description.

4.2 Landmark-based approaches to form analysis
4.2.1 Interlandmark distances

A classical application of landmarks to the study of biological forms comes from
craniometry, in which landmarks may be of two kinds; anatomical (e.g., tips of
prominences, sutural junctions) or extremal (e.g., the most dorsal or superior
point). Examples of such landmarks, and measurements taken between them, are
given by Brothwell and Trevor (1964) and Martin (1928). Interlandmark distances,
and indices constructed from them, may be used in phenetics.! Classically, sta-
tistical analysis of interlandmark distances proceeds through univariate and mul-
tivariate analysis (Sneath and Sokal, 1973). Such distances, however, can be gap-
coded (i.e., gaps in the statistical distribution of metrical characters between
Operational Taxonomic Units (OTUs) are identified and coded as different char-
acter states) and used in cladistic? analyses.

4.2.1.1 Euclidean distance matrix analysis

Euclidean Distance Matrix Analysis (EDMA) refers to he comparison of forms
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Richtsmeier, 1991). This procedure extends the classical approach to the com-
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Editor’s note: Phenetics refers to a classification based on morphological similarity, without consideration of
evolutionary relationships An Operational Taxonomic Unit (OTU) has been defined as a collection of ob-

jects (specimens in biology), each member of which is described with a set of measurements, which becomes

a dataset. Thus, OTUs are the lowest-ranking taxa in studies of variation. A set of OTUs is built in order to
arrange the specimens in a hierarchical manner (see Sneath and Sokal, 1973).

Editor’s note: Cladistics implies an evolutionary classification based on the succession of splittings through
which an organism has passed during its divergence from an ancestor.
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parison of OTUs through the comparison of interlandmark distances. A series of
equivalent landmarks is identified on each OTU to be compared. The distances
between these landmarks are determined, and for each OTU a matrix of these in-
terlandmark distances is produced (a form matrix). The geometric relations of all
landmarks are preserved in the form matrix, since it contains all interlandmark
distances. Form difference matrices (containing the ratios of corresponding dis-
tances between OTUs) are then calculated between single OTUs or between the
average form matrices of populations of OTUs. The magnitudes of the ratios in
the form distance matrix can be used to assess differences and to identify land-
marks whose locations vary between forms. Statistically, the behavior of these ra-
tios is complicated, but statistical inference can be approached through boot-
strapping (Lele and Richtsmeier, 1991).

4.2.1.2 Criticisms of the use of interlandmark distances

Tha 10a f intarlandaorl Alctamano e indicac oo tha hacio A marnhalagionl s
LU UdU Ul LU IAdIUITAIR ULALILUd UL 1THUILLD ad UIv vadld Ul vl plivivgival uc=

scription has been criticized on several counts. First, the way in which interland-
mark distances are commonly collected is such that no attempt is made to sys-
tematically describe the relative locations of landmarks, one to another. The result
is a collection of measurements that may fail to describe the full 3-D disposition
of landmarks as well as over-sample some regions at the expense of others. This
is a criticism of study design rather than of the use of interlandmark distances per
se; it does not apply when interlandmark distances are collected systematically,
as in EDMA. Second, as Bookstein (1978) has pointed out, extremal landmarks
(i.e., ones that occupy extreme limits of objects with respect to a particular line
or plane; e.g., the most dorsal, most superior) are entirely orientation dependent.
It 1s wise to avoid such landmarks. Third, no information relating to the curva-
ture of form between landmarks is preserved; this criticism applies not only to in-
terlandmark distances but to all landmark-based studies, and this issue will be
considered later in this chapter.

A further criticism relates to the difficulties of visualization of shape differ-
ences. Typically, univariate and multivariate analyses are undertaken to investi-
gate patterns of morphological variation. The results of such studies are often pre-
sented as plots of OTUs on canonical axes or principal components (PCs), or as
a matrix of inter-OTU distances. These approaches lead to precise mathematical
descriptions of patterns of covariance between (often disconnected) variables, but
they do not, in themselves, produce a simple, readily interpretable, spatially inte-
grated map of the size and shape differences under study. As such, their contri-
bution to a ready understanding of the complex differences in size and shape be-
tween OTUs is limited.

However, it is possible to work backwards from eigenvectors to reconstruct the
interlandmark distances of an OTU with any given set of PC scores. If these dis-
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tances have been carefully measured, it is then possible to reconstruct the origi-
nal landmarks in arbitrary registration and so to proceed to the visualization tech-
niques that utilize coordinates, as outlined later in this chapter.

One advantage of the study of interlandmark distances over the study of land-
mark coordinates is that, in contrast to coordinates, these distances are indepen-
dent of reference frame and registration (the way in which coordinates from dif-
ferent OTUs are “superimposed” on each other).

4.2.2 Co-ordinates and geometry
Use has aiso been made of Cartesian coordinate data in phenetic studies (e.g.,

Creel and Preuschoft, 1971; Corruccini, 1988). Rather than through interlandmark
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ecimens are described in terms of the x, y, and possibly z, coordi-
et of landmarks. Coordinate data allow a description of morphology
di"i“"l(S can be Teauuy' related one to another. As SdCu the ucSCI‘ip-
tion of form is complete (in the sense that all landmark locations are fully de-
fined). Coordinates, like linear distances, are amenable to multivariate statistical
analysis. Before carrying out such analyses, however, it is necessary to register
(“superimpose”) coordinates from different OTUs within the same reference
frame.

With coordinate data, the particular patterns of between-OTU variation repre-
sented by a particular principal component or canonical axis will be entirely de-
pendent on the way in which the OTUs have been registered (scaled, reflected,
rotated, and translated to “register” or “superimpose” the data within the same
reference frame) with respect to each other (see Bookstein, 1978). Thus, the per-
ceived displacement of any particular landmark from one shape to another de-
pends upon this registration. Different registrations will produce different im-
pressions of the shape transformations, and regions close to registration points (if
registration is undertaken using such points) will appear to change less than those
more distant.

The methods of Procrustes analysis (reviewed by Rohlf, 1990a; Goodall, 1991)
register forms by minimizing the “fit” (e.g., the mean square distance between
landmarks on each OTU). Differences between objects after Procrustes fitting can
be expressed in terms of Procrustes distances. Each OTU is represented as a point
in Kendall’s shape space, which is isometric with a sphere of radius 0.5 when an
object is defined in terms of three landmarks in two dimensions (Kendall, 1984).
When more landmarks or dimensions are used the shape space becomes more
complicated. The Procrustes distance coefficient between any two OTUs is non-
Euclidean and can be thought of as the closest great circle distance between them
(Kendall, 1984). For practical purposes, statistical analyses (such as principal com-
ponents) of Procrustes-fitted data are generally carried out in the tangent plane to
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shape space (which, as long as variations are small, adequately approximates the
curving surface of Kendall’s shape space). In this case, the distances between
OTUs are treated as if they are Euclidean, and normal statistical assumptions are
made.

It is worth reiterating that statistical studies of coordinate data rely on regis-
tration and scaling, whereas studies of interlandmark distances are independent
of registration. This difference in approach allows the investigator to confirm or
modify the conclusions drawn by using one set of techniques (e.g., Procrustes
analysis) in the light of studies using the other (e.g., EDMA). It can be argued
that such confirmatory analyses should form an important part of all morphome-
tric studies since all techniques suffer to a certain extent from their own peculiar
constraints and limitations.

4.2.3 Visualization and graphical representation of shape differences
using landmark data

4.2.3.1 Transformation grids

In contrast to multivariate analysis, an alternative strategy for comparing coordi-
nate representations of form is to describe “shape changes” or *‘shape differences”
(both are commonly used) as a deformation that smoothly rearranges the config-
uration of landmarks as a whole. The best-known representation of such a defor-
mation is in the form of a “transformation grid” (Thompson, 1917) in which the
differences in morphology between OTUs are described through distortions of a
rectangular grid.

There have been several attempts to produce mathematically defined, repro-
ducible visualizations of shape transformations. For practical reasons these are
commonly restricted to 2-D (x and y coordinates). Earlier attempts (e.g., De Coster,
1939; Moorees and Lebret, 1962) tended to suffer from problems associated with
the registration of one form on another, and with the extrapolation of the shape
differences indicated by differences in landmark location to the spaces between
them (Bookstein, 1978; Sneath, 1967).

One approach (Sneath, 1967) is to register landmark configurations from two
forms using least squares and to model the displacements of landmarks between
the first (base form) and second (target form) in both the x and y directions us-
ing pairs (one for x and one for y) of linear, quadratic, and cubic power sutfaces
(trend analysis). These surfaces are used to displace the nodes of a square grid in
both x and y (see below; thin plate spline) producing a distorted (transformation)
grid reminiscent of those hand drawn by Thompson (1917).

A very similar approach was introduced to morphometrics by Bookstein (1989).
A pair of surfaces is defined as in Figure 4.1a. The x and y coordinates of the
base form are represented in x and y, while the x coordinate, and then the y co-



Methodological issues in the description of forms 79

Fig. 4.1 The construction of a Cartesian transformation grid using thin plate
splines. In (a) the coordinates of landmarks taken from an ape skull are plotted
in x and y. The z axis represents the x coordinates of corresponding landmarks
on the target form (not shown). In (b) a thin plate spline is used to fit a surface
to the z coordinates shown in (a). A grid drawn in the coordinate system of the
original form is shown in the plane of the x and y axes. Arrows connecting the
nodes of the grid to the surface indicate the degree io which ihe nodes of ihe
square starting grid are displaced in x in the transformation grid. For clarity, only
some of the arrows are shown connecting the nodes with the surface.
Displacements in y are treated in the same way; thus, a pair of thin plate splines
(one in x and one in y) are used to draw a Cartesian transformation grid.
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ordinate, of the target form are each plotted in z. In this way two surfaces are de-
fined (i.e., two diagrams like Figure 4.1a); one illustrating the changes in x and
the other in y, between the base and the target forms. These surfaces are then fit-
ted by a pair of thin plate splines {one for x and one for y). The thin plate spline
is a sensible choice since it minimizes the “bending energy” required to take the
first form into the second. The pair of thin plate splines sends points in the first
form to points in the second in such a way that landmarks are mapped exactly to
landmarks and other points are mapped smoothly in between.

A Cartesian transformation grid can be constructed using the pair of thin plate
splines. The nodes of a square grid in the coordinate system of the base form are
repositioned first in x, by displacing them in x according to the height (z} of the
surface defined by the thin plate spline (as in Figure 4.1b) and then in y, accord-
ulg to the surface defined Uy the thin pl&te Spuﬁt‘: for y. Thus, Uy appryu‘ng the
same pair of splines to displace the nodes of a square grid, they are shifted in x
and y and the resultant deformed grid is known as a transformation grid (Figure
4.2a) that is visually very close to those derived by Thompson (1917). The per-
ceived mapping does not depend on the particular coordinate systems of the fig-
ures, making this is a registration-free method for visualizing the shape differ-
ences between two OTUs.

This approach can be criticized since the interpretation of the observed trans-
formation may owe as much to the starting grid geometry as it does to the bio-
logical reality of the shape change (Bookstein, 1978:94). Note also that the in-
terpolant function between the grids (the thin plate spline) is not the only possible
choice. That the thin plate spline minimizes “bending energy” is, however, intu-
itively appealing.

Besides producing a transformation grid, the method of thin plate splines can
also be extended to examine the affine and non-affine components of shape dif-
ference and to explore variation among populations of OTUs. Thus, it is possible
to “decompose” shape differences between Procrustes- registered OTUs into their
affine and non-affine components (the partial warps) and to apply principal com-
ponents to OTU partial warps in order to investigate shape variation among OTUs
(relative warps). These refinements are beyond the scope of this chapter and the
interested reader is referred to Rohlf and Bookstein (1990) and Reyment (1991).

4.2.3.2 Finite element analysis

In biology, finite element analysis, originally devised for describing the effects of
stresses on engineering materials, has been adapted to the task of characterizing
shape changes. In this approach, shape differences are described in terms of the
directions and magnitudes of the principal strains in the transformation of one
form to another. These methods are also “registration free” since they provide in-
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formation about the “‘stretching” of elements rather than the movement of land-
marks relative to the coordinate system.

“Homogeneous” finite element methods (e.g., Bookstein, 1978; Moss et al.,
1987) work under the assumption that shape changes (strains) are uniformly dis-
tributed throughout each element (are homogeneous). This is not necessarily true
of biological forms in which an element may span diverse tissues; consequently,
this simplifying assumption of homogeneity may have an effect on the biologi-
cal interpretation of results. Elements may be of different shapes but the simplest
possible ones are triangles whose apexes are equivalent landmarks between two
forms. The shape transformation between homologous elements can be described
by the major and minor axes of the ellipse obtained by deforming one ftriangie,
together with its inscribed circle, into the other (Bookstein, 1978). The directions
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of these axes (principal strains) indicate the direciions of maximum and minimum
shape change, and their magnitudes indicate the relative measures of these changes
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(Figure 4.2b). It is noteworthy that from the biometrician’s perspective, the prin-
cipal strains are invariant to element registration and that they relate the uniform
deformation of each element in the base form to the equivalent element in the tar-
get form.

“Nonhomogeneous” finite element methods, on the other hand, do not make
the assumption of homogeneity; they use more complex elements (i.e., cubes rather
than triangles), and allow the computation of local deformations around land-
marks. The Finite Element Scaling Method (FESA; e.g., Lew and Lewis, 1977)
is nonhomogeneous and has been widely applied in studies of craniofacial growth
and sexual dimorphism (Cheverud and Richtsmeier, 1986; Richtsmeier, 1986;
1989).

Although the selection of landmarks and finite elements is largely arbitrary, the
interpretation of shape changes in particular anatomical regions may differ ac-
cording to element design (Zienkiewicz, 1971; Cheverud and Richtsmeier, 1986).
For instance, thin triangles will tend to “amplify” small shape changes. In order
to minimize these effects, O’Higgins and Dryden (1993) have recently proposed
the use of the Delauney triangulation (see Green and Sibson, 1977).

4.2.3.3 Biorthogonal grids

Bookstein’s (1978) solution to the problem of element design is to compute the
deformation of many elements interpolated over the interior of the forms under
study and to derive a smooth map of shape changes over these elements. He calls
this method “biorthogonal grids.” O’Higgins and Dryden (1993) constructed such
grids using the thin plate spline as the interpolant. A small triangle was trans-
formed between OTUs using the pair of thin plate splines, and its principal strains
were calculated. Moving off a short distance in the direction of the first principal
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Fig. 4.2 The transformation from female to male gorilla crania: (a) Cartesian
transformation grid; (b) finite elements analysis; the crosses indicate the direc-
tions of the major (———) and minor ( ) principal strains; the limbs of the
crosses are drawn to scale indicating the magnitudes of these strains; (c) biorthog-
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Magnitudes are omitted for clarity.
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strain, a second triangle was transformed and its strains calculated. The strains
were smoothly joined in a diagram and the process was repeated for the second
(minor) principal strain. The result is a biorthogonal grid (see Figure 4.2c).

Using this procedure, the vagaries of element design are largely side-stepped
since the whole interior of the forms is taken to smoothly deform between them
and the matching of internal and boundary “homologies” is taken to conform to
a smooth mapping of the homologous landmarks. Note, however, that the choice
of homology mapping function (e.g., the thin plate spline) is not unique.

These approaches (Cartesian transformation grids, finite elements, and biorthog-
onal grids) for the visualization and geometric study of landmark data offer in-
teresting possibilities for the spatially integrated, graphical analysis of form dif-
ferences. All of these methods should be employed, however, with due regard to
their limitations. Cartesian transformation grids derived using thin plate splines
(Bookstein, 1989) suffer from a potential problem in that starting grid geometry
may influence the interpretation of shape transformation (Bookstein, 1978).
Additionally, it should be noted that a different interpolant applied to the same
data would produce different transformation grids. These considerations aside,
Cartesian transformation grids, like finite element methods and biorthogonal grids,
result in reproducible, mathematically defined graphical descriptions of shape
change independent of registration. All of these approaches may, however, pro-
duce different results when different landmarks are selected (a little-studied is-
sue) and element design will influence the outcome of finite element analyses.

It is important to appreciate that these methods do not attempt to model the bi-
ological mechanisms of shape transformation (e.g., growth processes); rather, they
produce geometric or graphical descriptions of shape differences and transfor-
mations. As such they allow conclusions to be drawn about patterns, but not about
the mechanisms that underlie the transformation or difference. Moreover, in the
study of these patterns, the limitations of each method should be clearly borne in
mind, and it would seem useful to consider the results from several approaches
simultaneously to provide a check on interpretation.

4.2.4 General issues relating to the use of landmark-based data

Recent developments in methods for the study of landmark-based data offer in-
teresting possibilities for the analysis of form differences. There are, however, a
number of issues relating to the use of landmark-based data that deserve consid-
eration.

If landmark data are to provide the basis for comparison of forms, it is impor-
tant that the landmarks be, in some way, equivalent between OTUs. The term “ho-
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mology” is often applied in this context, although the usual usage of this term is
to refer to components (organs, parts, characters) of organisms rather than land-
marks on these structures.

Pre-Darwinian homology was determined through the correspondence of parts
in their relative position (Owen, 1847). A homologue was seen as the same or-
gan in different animals under every variety of form and function. This corre-
spondence was taken to reflect the Bauplan of ideal types and does not refer to
evolution at all. Homologous structures in this sense were defined on the basis of
their correspondences and relations.

After Darwin (1859), homology was reinterpreted as reflecting the structure of
ancestral types; evolution was taken as the explanation of sameness. Indeed, to
Darwin, homology was another component of the evidence for evolution; ho-
nologous structures between species are such because they derive from a com-

mon structure in a common ancestor.

Sneath and Sokal (1973) have pointed out the inherent circularity in the iden-
tification of homology (using its post-Darwinian definition), since this identifica-
tion depends on knowledge of evolutionary history, and knowledge of evolution-
ary history depends on the study of homologous features. In order to develop a
pragmatic solution to this “homology problem,” Sneath and Sokal (1973:77-82)
loosely describe homology as composed of “compositional cotrespondence” (im-
plying a qualitative resemblance) and “structural correspondence” (referring to a
spatial arrangement of parts, as in Owen’s definition). This leads them to the ap-
proach they term “‘operational homology.” Thus, two characters are operationally
homologous if they are “very much alike in general and particular.” In so doing,
they posit homology based on criteria of similarity, and leave the testing of ho-
mologies to repeated finer detail analyses. It was hoped that further analyses will
lead to further support or refutation of operational homologies. This operational
approach allows the taxonomist to “get started” in a study, since homologies are
identified without reference to phylogenetic reconstruction.

Cladistic approaches to phylogenetic reconstruction have pointed to a method
for the testing of operational homologies in an evolutionary sense. Eldredge and
Cracraft (1980:36) in viewing homology from a cladistic perspective indicate that
the solution to the “homology problem” rests with the concept of synapomorphy
(the sharing of derived character states). “Homologous similarities are inferred
inherited similarities that define subsets of organisms at some hierarchical level
within a universal set of organisms” (italics in original). Thus, they suggest that
the “test” for homology is not similarity, but the congruence of other hypothe-
sized synapomorphies in defining sets of a cladogram. Postulated (operational)
homologies are used to construct a cladogram in which (if it is taken to be a true
reflection of phylogeny) congruent characters are attributed to synapomorphy or

=
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“true homology.” Noncongruent characters (homoplasies) are taken as reflecting
convergence and parallelism. One problem with this cladistic approach is that, in
practice, a cladistic analysis may result in the identification of several equally par-
simonious cladograms. In this case some operational homologies are supported
by some analyses and not by others, and so it is not possible to unequivocally
confirm evolutionary homology.

This cladistic approach to homology, like the approach of “operational homol-
ogy” in phenetics, relies on the testing of hypothesized homology through itera-
tive analysis and reanalysis. However, unlike the operational approach, the cladis-
tic testing of homology utilizes hypothesized evolutionary relationships and, as
such, is truer to Darwin’s, rather than Owen’s, definition. This is not to say that
an operational approach to the identification of homology is unnecessary for the
praciice of cladisiics; rather, it is “useful, even necessary, io organize data as pu-
tative homologies, which are either corroborated or refuted by the cladogram that
best fits the data” (Nelson, 1994).

The question arises as to how the concept of evolutionary homology can be ap-
plied to landmarks as opposed to characters or organs. Landmarks might be iden-
tified as operationally homologous through the identification of corresponding lo-
cal relations (after Owen). Such operationally homologous 1andmarks can and do
adequately serve as the basis for phenetic studies, and may form the basis of phy-
logenetic reconstructions using characters derived from sets of landmarks. Thus,
individual landmarks serve as the basis for the quantification of characters whose
homology might be tested through subsequent phylogenetic analyses. In practice,
an operational approach to landmark homology is adopted in the early stages of
both phenetic and cladistic analyses, and the problem of Darwinian homology ap-
pears to have little impact; operationally homologous landmarks are, in general,
readily recognized and adequately serve as the basis for evolutionary studies (of
variation, phylogeny, and biogeography) among closely related OTUs.

Another problem relating to landmark equivalence may be encountered in de-
velopmental studies. A landmark defined as the junction between three bones in
the skull may be taken to be equivalent to a similarly defined landmark on an-
other skull or on the same skull at a different time (e.g., a radiographic study).
Developmental variation may, however, result in differences in the derivation of
the exact parts of the three defining bones that meet to form the landmark.
Likewise, local growth phenomena (e.g., bony remodeling, shifting muscle in-
sertions) influence the derivation of landmarks at tips of prominences or in pits.
As such, landmarks that appear equivalent in terms of their local relations need
not necessarily reflect the locations of homologous material. Thus, in what sense,
if any, can such landmarks be considered homologous?

Wagner (1994) has recently addressed this issue. He notes that, despite the fact
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that during growth bony material is likely to be completely replaced, structural
identity is maintained. This maintenance of identity requires the action of “mor-
phostatic” mechanisms, and although landmarks may not be equivalent in the
sense of being located on homologous material, they may be equivalent in terms
of the continuity of these morphostatic mechanisms. Developmental equivalence
between landmarks may therefore be considered to equate to homology in the
sense of “correspondence caused by continuity of information” (van Valen, 1982).
These considerations open up a possible role for landmark-based descriptions
of form in understanding ontogenetic processes. In the case of the skull, for in-
stance, displacements of landmarks during ontogeny result from underlying
pI'OCf:SSGS such as suturai growm or DOIly remouelmg IHCICIOTC the LOIHDH]d.llOl’l
of morphometric data with data on these processes (e.g., remodeling activity)
mig gut offer new 1 I‘Sigmb into the ontogeny of buapt‘: transformation. An exar uple
of such a study is provided by the work of O’Higgins and Dryden (1992), in which

cnrtioaal ramadalineg mane ara camhbinad 2th tranafmrmatinn gricda +arvr iné
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to examine the integration of facial bone displacements with cortical remodeling
in the mangabey.

The issue of equivalence between landmarks arises in yet another circumstance.
For example, in biomechanical studies, functional equivalence may be more im-
portant than either evolutionary or developmental homology. In that case, the on-
togenetic or phylogenetic equivalence of landmarks on bat and bird wings is of
less concern than their functional equivalence in considering the biomechanical
basis of flight in these species. In comparing the functional morphology of such
structures, landmarks defining, for instance, the extremes of lever arms or the lo-
cations of muscle insertions, may be selected on the basis of their functional equiv-
alence.

Besides the problems inherent in identifying equivalent landmarks on OTUs,
there are a number of other issues that surround their use. Landmark-based meth-
ods leave the form between landmarks unsampled. A problem is presented where
no landmarks can be readily identified in a particular anatomical region because
of a lack of surface features (e.g., on the smooth bones of the vault). In this case
it is possible to interpolate landmarks according to the locations of observed (op-
erationally homologous) landmarks and surface curvature. It is doubtful, however,
that such landmarks (more appropriately termed pseudo landmarks) can be con-
sidered homologous between OTUs, in either a developmental or evolutionary
sense, since their location relates to mathematical, as well as biological, con-
straints. This consideration is important in studies that may use several constructed
landmarks (see Section 4.2).

A further issue arises in the context of different types of landmarks, since, by
their nature, some can be readily located (e.g., a sutural junction), whereas oth-
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ers can only be approximately identified (e.g., the tip of a prominence). Practical
considerations, therefore, play a role in limiting the number of landmarks that can
be usefully included in a morphometric study.

Thus, a number of issues surround the choice and use of landmark data as the
basis of form description. Despite some of these constraints, landmarks continue
to provide an important basis for the analysis of form and offer one important ad-
vantage over morphometric approaches that use few or no landmarks; it is possi-
ble to investigate variations between OTUs in terms of “homologous” regions.
For example, it would be impossible to consider differences in the facial skele-
ton between two apes unless the location of the face relative to rest of the skull
were defined on each, for which, some landmarks defining the iocations of skuil
components are required.

Comparison of the disposition of equivaient landmarks between OTUs is a good
way of descrlbmg changes in the ‘homolo gy map.’ In some studies, however,
there may be difficulties in defin g equivaient, or 1 df‘:f:d any landmarks {c.2.,

cell shape, shell shape). In these circumstances, and in the case where compar-
isons are sought based on the form of outlines between definable landmarks, it
may be necessary to turn to alternative morphometric strategies.

4.3 Forms with reduced landmark dependency

In certain circumstances the biometrician may be faced with the challenge of ex-
amining shape variations between OTUs lacking sufficient readily identifiable,
equivalent, landmarks. Examples are found in studies of cells, leaves, insect wings,
ostracods, and so on. Alternatively, although landmarks may be readily identified,
it is possible that outlines of regions between these landmarks are the focus of
study. Such an example is presented by the cranial vault and the curvature of vault
bones between landmarks.

In each of these situations the investigator may justifiably seek morphometric
strategies that show little or no dependence on landmark identification. Most such
work has been restricted to the analysis of 2-D outlines, although many of the
available approaches are extensible to 3-D.

The outlines of objects can be traced from photographs, or projected using a
digitizing tablet, or derived from video images using readily available image analy-
sis software. Details of such an apparatus are given in Johnson et al., (1985) and
an algorithm for tracing the outline of an object is given by Rohlf (1990b). Points
are sequentially read from the outline at determined intervals and stored as a se-
ries of x and y coordinates. If general measurements such as the perimeter (or en-
closed area) are sought, these can be derived directly from raw digitizer output
using standard software.
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4.3.1 Outlines and the enclosed area within them

There are several landmark-independent methods available for the description of
forms in terms of their outlines and the area enclosed within them.

4.3.1.1 Shape factors

Shape descriptors that are invariant to differences in OTU position and orienta-
tion (i.e., non-registration-dependent quantities) are desireable. Examples are area,
perimeter, maximum length, and so on. A very simple measure of shape is given
by the aspect ratio:

max length
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where the max breadth is 90° to the max length. Given the area, A, and the perime-
ter, P, of an object, two further quantities can be readily calculated:
47 A

P
P—VP:—47A
TP+ VP —4ma

Fr = 4.2)

F3 (4.3)

F; provides a measure of elongation and F, and F; are measures of the un-
dulation of the outline relative to a circle (in which P? = 47 A).

Note that quite different outlines can have similar values for one or more, of
these simple measures, and it is advisable to consider all three simultaneously.
Examples of their use in biology are studies of cell shape (e.g., Young et al., 1974)
and cranial form in the primates (O’Higgins, 1989).

4.3.1.2 Moments

Sometimes a form may be specified as a collection of interior points. In the case

of digitized images, the positions of interior points are specified by the x and y

coordinates of pixels, the distribution of which can be used to describe a form.
For a single variable, for example, the x locations of pixels, my, the pth mo-
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my, = > (xP) = ,:[ xPf(x)dx. (4.4)
Thus, in a binary image, the zero order moment is the number of pixels enclosed
by the outline. The first moment is the mean of x, the second its variance, and so
on.
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For a 2-D distribution along arbitrary axes x and y, the moment of the order
(p +q) is defined by:

Mpg = Lm f_w xPyaf(x,y)dx dy. 4.5)

This series of moments uniquely describes an image and can, therefore, be used
to reconstruct it.

As described above, the moments are dependent on position and orientation
and, as such, are of little use in taking measures of shape that will allow com-
parisons between forms differing in registration. Central moments, which are

translation-independent, can be calculated hv rPFPmnc the xs and ys to the cen-
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troid. Hu (1962) has further described 2-D moment invariants, which show size,
rotation, and con
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been applied in situations where landmark identification is difficult (e.g., cell bi-
ology; Dunn and Brown, 1986). Rohlf (1990b) comments that there is evidence
to indicate that moments perform well in classification but that, in his own ex-
perience, there have been problems in their use due to lack of statistical inde-
pendence between moment invariants, and their sensitivity to rounding errors.

4.3.1.3 Skeletons and medial axis transforms

Blum (1967) has introduced a very different approach to describing shapes. The
shape is defined by a symmetric axis or skeleton that consists of all points within
a form that do not have a unique nearest boundary point upon the shape. Associated
with each point on the symmetric axis is a width function defining the distance
to any of the set of equally distant nearest boundary points. The “grassfire model”
(Blum, 1973) makes comprehension easier. The shape is characterized as an area
of dry grass. If it is fired simultaneously all around the edge, it will burn toward
the interior. If an even rate of burning is assumed, the points at which the fire
meets itself comprise the points defining the skeleton; the time taken to reach
these points is the function.? The skeletal pair (axis and function) exhaustively
describe as well as allow for the complete reconstruction of the form, indepen-
dent of landmarks.

Straney (1990) considers Blum’s and alternative approaches to skeletonization
including Bookstein’s (1979) variant; the line skeleton. Bookstein’s differs from
the symmetric axis by being composed of line segments rather than line segments

3 Editor’s note: The medial axis transform can also be visualized as a series of concentrically-overlapping cir-
cles that touch the outline in a tangential or orthogonal fashion. The skeleton is then defined as the locus of
all of the centers of these circles, which are equidistant from all borders of the outline.
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and parabolic arcs. Additionally, the width function associated with Bookstein’s
(1979) line skeleton is not necessarily symmetrically located within the form, and
so is not single-valued as that of Blum (1973).

Line skeletons and symmetric axes have been applied to studies of mandibu-
lar growth (Bookstein, 1979; Webber and Blum, 1979). The results of these stud-
ies indicate that the branch points and angles between skeletal branches may be
similar between OTUs. It has therefore been suggested that the branch points may
serve as useful landmarks for morphometric analysis. Such an approach, in which
branch points are taken as equivalent landmarks between OTUs, was followed by
Straney (1990) in a study of the evolution of the baculum of rats.

The use of skeletons of images as the basis for the identification of operationally
homologous landmarks, therefore, represents a strategy for the comparison of
f 11118 Wllll 11 _lCU C)&leﬁ-lal 1&1‘1u1“1‘1&I1(S ll bllUUlU UC nOteU uu'wever lhat UlllCl'
ent skeletonization algorithms and subtle differences in outline form may result
in skele ons with t.l'l.‘liw different tGpUlngleS Also, the identification of such Oper-

ational homologies may not be necessarily supported from a developmental or
evolutionary perspective.

4.3.2 Boundaries

The three approaches outlined above, shape factors, moments, and skeletons, char-
acterize form in terms of an outline and the area enclosed within it (note: gray
scale extensions of these methods are possible with pixel data). More commonly,
forms are studied in terms of the boundary alone.

Raw data from a digitizing tablet, or a video digitizer, generally consist of a
stream of unevenly spaced x and y coordinates describing the boundary of each
OTU. These cannot be directly compared between OTUs because of differences
in landmark number and spacing, and in the registration of objects.

4.3.2.1 Pseudo landmarks

Several strategies exist for comparing OTU outlines. One approach is to divide
the outline of each OTU into segments, each of which can be imagined as being
delimited by a pseudo landmark. Such pseudo landmarks are operationally, but
not necessarily biologically, equivalent.

The matching of pseudo landmarks between OTUs is relatively simple if one
biologically equivalent landmark can be identified on each OTU, since all others
can be counted sequentially from it. If no biologically equivalent landmarks can
be identified, then matching can be achieved through Procrustes analysis. Such a
maneuver will simultaneously “match” pseudo landmarks and register outlines
with respect to each other.
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Fig. 4.3 Polar coordinates (r¢-r,) of boundary points calculated from starting point
(a) and centroid (b).

Pseudo landmarks, once identified, may form the basis of morphometric stud-
ies using any of the methods for the study of landmark data outlined earlier in
this chapter. It must be borne in mind, however, that pseudo landmarks are un-
likely to be equivalent in either an evolutionary or developmental sense.

4.3.2.2 Polar coordinates

Rather than divide the outline into equally spaced segments with pseudo land-
marks at each segmental junction, it is possible to transform the outline data into
polar coordinates centered on the objects themselves. The boundary of a convex
shape 1s reexpressed in terms of the lengths of radii spaced at equiangular inter-
vals. On each shape an origin (center) is defined for the polar series together with
a starting point on the outline from which the series will be deemed to begin
(Figure 4.3).

As an example, Yasui (1986) used polar coordinates to study shape variation
in Japanese crania. He registered polar representations of outlines with respect to
each other by rotating them about their centroid and determining a criterion of
best fit.* This is similar to the approach of O’Higgins et al., (1986) and is a form
of Procrustes superimposition (Goodall and Bose, 1987).

The line connecting the origin (center) to the starting point is the line to which
all other polar coordinates are referred. If the origin and starting points are “ho-
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4 Editor’s note: This is, in effect, a crosscorrelation procedure (Pamell and Lestrel, 1977).
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and questions being addressed, successive polar coordinates can be considered
equivalent between OTUs. Additionally, Bookstein (1978) has pointed out that
errors in the location of the origin are expressed in the alteration of every value
of the radial function in a complex and nonlinear way.’

4.3.2.3 Curvatures

Alternatively, the raw sequence of boundary x and y coordinates derived from a
digitizing tablet or image analysis system can be subjected to direct analysis of
outline curvature.

In certain circumstances, the investigator may wish to compare open curves
(such as might be defined by a series of landmarks occupying some portion of an
outline) between OTUs. If these can be expressed such that one coordinate (e.g.,
y) 1s a single-valued funciion of the oiher (x), then it is possibie io fit a polyno-
mial, cubic spline, or other function, to the sequence of y coordinates (see Rohlf,
1990c).

Given a closed outline, that is, one in which the y coordinates cannot be ex-
pressed as a single-valued function of x, different strategies need to be consid-
ered. One approach is to describe the outline in terms of the tangent angle at the
points on the outline. These points may represent operational homologies, they
may be spaced equidistantly around an outline, or they may represent the nodes
of outlines divided into equal numbers of segments.

In the case in which the points are not operational homologies, tangent angles
may be maiched between outlines by relating them sequentially to an operationally
homologous starting point on each form, or through a Procrustes superimposition.

A comparison of raw tangent angles is, however, sensitive to the orientation of
forms, since the tangent angle is measured relative to some arbitrary line. This
orientation-dependency can be eliminated by relating all tangent angles to the
starting point. This is accomplished by calculating the difference in tangent an-
gle between the start point, 6(0), and each outline point, 6(z), that is:

() = 6(1) — 0(0), (4.6)

in which ¢(f) expresses the angular change between the tangent at a particular
point on the outline and the starting point.

If the outline perimeter is scaled to a length of 241, and the distance along the
outline between the starting point and the current point is 7, then the angles, mea-
sured in radians, can be derived from a new function as:

< £y LRI

$*(1) = ) — . @.7)

3 Editor’s note: This particular problem can be ameliorated by shifting the location of the center of the radii to
the centroid and recomputing equiangular intervals between the radii.
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which is equal to O for every point on the outline of a circle (for details see Zahn
and Roskies, 1972). Thus, when applied to a plane closed curve, the magnitude
and sign of @¢*(#) is related to the difference between the actual curvature and that
of a circle. Note that ¢*(#) is invariant under translations, rotations, and changes
in perimeter.

Rohlf and Archie (1984) applied the ¢*(r) function to the description of the
shape of mosquito wings (Figure 4.4). They calculated ¢*(¢) for 100 equally
spaced values of #, subjected the ¢*(f)s to Fourier analysis, and used the result-
ing harmonics as the basis for multivariate phenetic analyses. Lohmann has also
used the ¢*(¢) functions, in combination with principal components analysis, as
the basis of his method of “eigenshape analysis” (reviewed in Lohmann and
Schweizer, 1990).

Young et al., (1974) describe a relaied measure of shape based on the notion
of “bending energy.” A 2-D outline made out of a homogeneous material, if al-
lowed to adopt its “free” form would assume the shape of a circle because this is
the shape which minimizes the stored energy. To make more convoluted outlines
requires the expenditure of work in the form of bending energy. The measure they
describe creates equivalence classes of figures with equal “stored energy.” The
shape is divided into small regions and for each region the curvature, K, is de-
fined as the change in direction per unit length. The total “bending energy” is
given by the sum of K,°s over the whole outline.

They also describe a simple approach to the calculation of bending energy, di-
rectly computed from the chain code (directions from pixel to pixel) of an out-
line through difference codes (changes in direction from pixel to pixel). The cal-
culated value of bending energy 1s invariant with respect to position and rotation
but is affected by size as well as shape differences. This accords with the intu-
itive feeling that it takes more energy to bend a short length of material into a cir-
cle than a long one.

4.3.2.4 Complexity

In one sense, bending energy relates to the complexity of an outline, since highly
convoluted outlines have larger values of bending energy than less-convoluted
outlines of the same length.

Another approach to describing the complexity of form typical of biological
materials is based upon the concept of fractal dimension (Mandelbrot, 1983). As
a curve in a plane becomes increasingly more convoluted, it fills up more and
more of that plane. A simple line has a dimension of one. A complex curve, to
some degree, fills a plane, and so it can be considered to have a dimension greater
than one; this is its fractal dimension. The fractal dimension can be employed as
a summary measure of complexity.
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Fig. 4.4 Calculation of the tangent angle function from a skull outline. The
boundary is scaled to length 2. ¢*(t) = 6(t) — 8(0) — t (see text)

If a line of length 1 is divided into N equal parts, each equal in length, r, where
r = [/N, then:

Nr = 1. (4.8)
For two dimensions:
N2 =1, (4.9)

where r is being expressed in terms of a one-dimensional characteristic of area,
that is, its “‘linear scale”; for example, the diameter of a circle, or the length of a
side for a square. This leads to the general equation, which is:

NP =], (4.10)

where D is the fractal dimension.

D can be estimated by the relationship between the estimated length of an out-
line and the scale of measurement. Examples of the use of fractal dimension as a
means of summarizing complexity in biological forms are provided by Reyment
(1991:152) and by Katz and George (1985).

4.3.2.5 Fourier analysis

The methods considered above, in the context of the analysis of forms with few
or no landmarks, can be divided into two groups. The first group of methods pro-
duces summary measures of form (e.g., shape factors, bending energy, fractal di-
mension), which can be compared directly. The second results in a re-expression
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of the boundary information present in the original x and y coordinates (e.g., po-
lar coordinates, tangent angle function). The latter ones offer one significant ad-
vantage; they provide largely registration- independent data (although they are de-
pendent on the starting point and, in the case of polar coordinates, the centroid
location). These new data may be compared using the techniques of multivariate
analysis, or they may be subjected to a further transformation such as Fourier
analysis; a transformation of data from the spatial to the frequency domain. This
may be useful in understanding periodicity (but which rarely has a basis in the
biological determinants of morphology), or in summarizing large datasets.
Fourier analysis results in the decomposition of a periodic function (e.g., polar
coordinates, ¢*(7)) into a series of sinusoidal waves of differing frequencies, com-
posed of phases and amplitudes which, when summed, can reproduce the origi-
nai IOITI] Fourier d.l'ldlyblb has been dppueu to the measurement 01 01010g1€&l
shapes by a number of workers (e.g., Lu, 1965; Kaesler and Waters, 1972; Lestrel,
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f(t), can be approximated by:

F) = ap + z a, cos(nt) + Z b, sin(nt), 4.11)
n=1

where the a,, are the cosine components, and the b, are the sine components. They
describe the cosine and sine waves at a particular frequency, n (k is the maximum
harmonic order of the calculated series). The single Fourier series will provide a
fit to any smooth single-valued periodic function. It can be applied to both polar
and curvature representations of an outline, and the resulting Fourier coefficients
can be used to reconstruct that outline. The polar representation of the Fourier se-
ries can be written as:

k k
r=F(6) =ao+ > a,cos(nf) + > b, sinné). (4.12)
n=1 n=1

In this form, the function, F(0), describes the magnitudes of successive radii, r,
at successive angular displacements, 6.

Polar coordinates are only amenable to Fourier analysis when each radius 1n-
tersects the outline at only one point. When the outline is more complex, it may
be possible to calculate the Fourier series from x and y coordinates through the
tangent angle formulation (Zahn and Roskies, 1972).

Alternatively, the x and y coordinates from an outline may be submitted to el-
liptic Fourier analysis (Kuhl and Giardina, 1982; Lestrel, 1989) in which Fourier
series are separately fitted to Ax and Ay expressed as functions of cumulative
chordal distance (see Chapter 2), or to dual-axis Fourier analysis in which the x
and y coordinates are fitted directly (Moellering and Rayner, 1981).
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There is also an alternative representation of the Fourier series; the amplitude-
phase-lag representation:

k
r=F() =Ro+ D R,cos(nd+ ¢y (4.13)
n=1

The &s are known as the phase lag components; they contain all the rotational in-
formation (i.e., about “starting point”). As such, they register the waves of dif-
ferent frequencies with respect to each other in a way that allows reconstruction
of the original outline. The phase lag components are readily calculated from the
sine and cosine components considered earlier (Eq. 4.12) :

dn = tan™! (ﬁ’-). (4.14)

an

The amplitude components, R, are a measure of the contribution of each har-
monic to the whole form. They contain no phase information, and so are inde-
pendent of the boundary landmark chosen as the start of the polar series. They,
too, are readily calculated from:

R, = Va2 + b2. (4.15)

This representation offers some advantages. In situations where dependency on
the starting point definition is considered problematical, the amplitude compo-
nents alone can be compared between shapes. It should be noted, however, that
amplitude components alone do not uniquely specify a shape; different shapes
may share the same amplitude components. In a biological situation it seems un-
likely, however, that OTUs will differ in phase components alone. Thus,
O’Higgins and Williams (1987) and O’Higgins (1989) have shown, in studies of
cranial form in primates, that using amplitude components alone gives a similar
pattern of between-species discrimination when compared to the combined am-
plitude/phase-lag spectrum. Nevertheless, the degree of between-OTU discrimi-
nation in the former analysis was reduced relative to that in the latter because of
the lack of phase information.

4.4 Analysis of data and the reconsiruction of form
In Section 4.3 a number of methods were considered by which Cartesian coordi-
nate data representing a boundary can be used to provide measures of form. Some
of these approaches (e.g., shape factors, bending energy, fractal dimension) result
in simple summary measures of shape that can be readily compared between
OTUs. Others result in a reexpression of the information contained within the
original Cartesian representation in a way that is, to a greater or lesser degree, in-
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dependent of the original registration. Thus, moments, medial axis transforms, po-
lar coordinates, curvature functions, and Fourier series exhaustively describe, and
can be used to reconstruct, an OTU. In this section some general aspects dealing
with the statistical analysis and reconstruction of form will be considered, with
an emphasis on the role of Fourier analysis. The section ends with some broad
conclusions concerning shape analysis.

4.4.1 Size

Many of the methods for shape description considered here result in data which
are invariant with respect to size. This arises because the data are ratios, or an-
gles, or are standardized with respect to some “size variable.” Other methods, for
example, landmarks, linear measurements, polar coordinates, and medial axes,
preserve information about scale. It is important, therefore, to consider how to ac-
count for size differences and their consequences. The literature on scaling is
large, and the reader is referred there for details of methods and approaches to
scaling (e.g., Jungers, 1985; Schmidt-Nielsen, 1984). It is, however, worth rais-
ing some general points here.

Two specimens may differ not only in shape but also in size. At first this seems
obvious and clear-cut, but there are semantic and mathematical difficulties 1n dis-
cussing size independent of shape in most circumstances. In the comparison be-
tween two objects of identical shape, the difference between any pair of homol-
ogous measurements, one from each OTU (e.g., lengths, widths, heights), will
indicate the scaling required to make them identical. In most biological situations,
however, OTUs will differ in shape. Consequently, intuition comes into play and
the concept of size becomes less well defined. Sneath and Sokal (1973) ask, “which
is bigger, a snake or a turtle?” The term “size” in this circumstance relates to the
differences in scale over whole objects. As such, *“size” might be best thought of
as a vague term relating to the differences in magnitude of many dimensions.

Many different approaches have been taken in determining “size” differences
between OTUs and for choosing suitable scaling variables between differently
shaped OTUs. The choice of methods depends on the questions being addressed
and on the investigator’s concept of size. In biomechanical studies, a quantity
such as body mass might be appropriate to scale measurements (e.g., Alexander,
1991). Alternatively, the length of a lever arm might be chosen, the choice of
scaling variable being justified from an engineering perspective. In phenetic or
cladistic studies, however, the problem is more difficult: is body mass the most
appropriate choice? Different workers have used different “‘size variables.” Some
of these are external to the object under study. For instance, Wood (1976) used
femur length as an estimate of body size, and determined the allometric relation-
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ship between this and a number of cranial and other dimensions. Other workers
have used “size variables” that are derived from the object itself. For instance
Albrecht (1978) used three different measures of size: the greatest length of the
skull, the geometric mean of the log transformed cranial variables, and an esti-
mate of cranial volume, in a study of the craniofacial morphology of the Sulawesi
macaques.

Considering the difficulties in providing an unequivocal size measure for dif-
ferently shaped forms, it seems sensible to use some measure that describes the
magnitudes of many variables. Examples of such measures include centroid size
(Bookstein, 1978)—a measure of the deviation of landmarks from the centroid of
a shape—and area (which relates to all boundary points).

Turning to Fourier analysis, it is often stated that the constant or zero-order co-
sine components (ags) are suitabie size measures with which to scale OTUs de-
scribed in terms of polar coordinates, since the ags are closely related to the area,
and form a natural part of the Fourier series. Although scaling by the ap term is
usually sensible and appropriate, it seems, from the considerations above, that in
some circumstances another “size measure” may be more suitably applied to the
polar coordinates themselves prior to Fourier analysis. In any case, the choice of
a “size measure” in any one study needs to be undertaken in the knowledge that
each may be different and should be based on the particular biomechanical, on-

togenetic, or phylogenetic issue that is being addressed.

4.4.2 Data reduction and shape reconstruction

Several of the methods (e.g., moments, medial axis transforms, polar coordinates,
curvature functions, and Fourier series) described earlier result in exhaustive de-
scriptions of individual OTUs and generate a large number of variables. As such,
statistical comparisons are often best achieved through the use of the techniques
of multivariate analysis. Principal components analysis (PCA) of the covariance
or correlation matrices between OTUs may be carried out to investigate patterns
of variation. In such analyses, each OTU may be described in terms of registered
(Procrustes) Cartesian coordinates of outline points, polar coordinates of outline
points, curvature functions, moments, or Fourier coefficients.

Alternatively, analyses might be undertaken to investigate patterns of variation
between groups of organisms through Mahalanobis’s distances, canonical axes or
discriminant functions. In these circumstances the number of measurements (co-
ordinates, moments, ¢*(f)s, etc.) must be considerably less than the number of
individuals included in the analysis. If large numbers of specimens are not avail-
able it becomes necessary to attempt to reduce the quantity of data from each.
Many strategies are available to achieve this aim. These include the selection of
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fewer data on the basis of what appears “sensible” from the biologist’s perspec-
tive (a highly subjective exercise), selection on the basis of some measure of likely
discriminating value (e.g., F-ratios), and data reduction by way of PCA.

It is also possible to apply the technique of Fourier analysis to the task of data
reduction for statistical analysis, since good approximations of the original form
can be achieved with relatively few Fourier components. One approach to se-
lecting the number of Fourier components to be used is by means of the harmonic
amplitudes (R,s). These can be plotted against harmonic order to produce a power
spectrum (Figure 4.6) that allows a rapid, objective, quantitative assessment of
the contribution to the overall form of components of successive frequencies.
Figure 4.5 illustrates a chimpanzee cranium reconstructed from increasing num-
bers of Fourier components via polar coordinates; a good approximation is
achieved by relatively few of the lower-order harmonics in the series. This is be-
cause the form is generally globular and smooth; higher-order Fourier terms are
required to describe finer, more jerky aspects of outline. Note that different bound-
ary forms will be better summarized by different combinations of Fourier com-
ponents.

The selection of the lower-order Fourier components for statistical analysis of
their harmonic amplitudes does not necessarily ensure optimal discrimination be-
tween OTUs. This is because information describing aspects of form that differ
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Fig. 4.5 A schematic illustrating the production of a power spectrum (see Fig.
4.6) for relatively simple, gently undulating forms. Most of the shape informa-
tion is represented by the first few, low-order Fourier components.
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Fig. 4.6 A chimpanzee cranium reconstructed via polar coordinates from in-
creasing numbers (indicated alongside each reconstruction) of Fourier compo-
nents (see Fig. 4.5). A good representation is obtained with as few as twenty
Fourier harmonics.

between OTUs may reside in some of the higher-order Fourier terms, omitted on
the basis of their relatively small harmonic amplitudes. If discrimination is the
objective of statistical analysis, then selection of Fourier components should be
based on their discriminating ability rather than their overall contribution to the
power spectrum. Thus, the selection of components on the basis of the ratio of
between-group to pooled within-group variation (F-ratio) or through step-wise
discriminant analysis may be more useful.

Thus, Fourier analysis presents a means of reducing the number of variables
per OTU. It has, however, been criticized on a number of grounds. The Fourier
series is essentially a spectral decomposition of a periodic function; data in the
spatial domain are transformed into the frequency domain. In the process, all in-
formation regarding the relative locations of boundary points is referred to the



Methodological issues in the description of forms 101

starting point, and even if this is taken to be homologous between forms, it is un-
likely that individual Fourier coefficients can be considered homologous in an
evolutionary or developmental sense. As such, the application of Fourier analy-
sis in the study of biological variation has been the subject of debate.

Bookstein (1978) and Bookstein et al., (1982) have criticized Fourier analysis
because the Fourier decomposition of a curvature function around an outline
allows for one landmark only, the starting point. If the aim of the study is to ex-
amine differences in homology relationships, then homologies will not be dis-
cemible from the Fourier coefficients.® The description of the pattern of disposi-
tion of homologies is confused, not aided, by Fourier analysis.

Ehrlich et al., (1983) have replied to these criticisms. They rightly state that
“examination of homologous skeletal features is only one of many approaches”
to biomorphological studies. Their work on the foraminiferan Globoroialia iru-
catulinoides indicates that there is a “‘consistent angular relationship between the

orientation of the second harmonic and the spiral side keel.” With this noted, they
indicate that it could be suggested that “the very fact that the radial Fourier se-
ries 18 locking onto homologous points is a good reason not to use the Fourier se-
ries; that is, given the relationship, why go through the complex calculations?”
The justification they give is that “the possibility always exists, however, that the
additional data needed to fully reconstruct the profile between homologous points
may contain biologically interesting information.”

Read and Lestrel (1986) provide an example in which measurements taken be-
tween homologous points fail to describe significant differences in morphology
between structures because the measurements omit the boundary connecting the
landmarks. They express agreement with the observation made by Bookstein et
al., (1985:3) that “although no morphometric method can be wrong in all con-
texts, neither is any method universally applicable.”

4.5 Concluding remarks

This chapter has been concerned with a survey of methods available for the de-
scription of biological forms. A number of issues have been raised concerning
their use. These issues impact every aspect of shape analysis: the definition of
landmarks, the identification of homologies, the strategies available when few ho-
mologies can be identified, the ways in which data might be compared between
forms, and the consequences of data collection and transformation strategies on
the perception of shape differences.

SEditor’s note: Chapters 14 and 16 present a procedure that preserves homology withtin a boundary-outline
context.
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Clearly, there is no one approach or collection of approaches to shape analy-
sis that is ideal in all circumstances. Fourier analysis, the subject of this volume,
is just one of many techniques for shape analysis available to the modern inves-
tigator. In most biological circumstances, comparisons of individual harmonics
between shapes will rarely provide readily interpretable information about basic
biological processes such as ontogeny or phylogeny. This is because Fourier com-
ponents are not necessarily homologous between OTUs in terms of the features
they describe. In combination, however, the shape summaries that can be pro-
duced through Fourier analysis may be useful in the multivariate assessment of
overall morphological differences arising because of underlying biological
processes.

The morphometrician must choose strategie s for shape description and com-
panson that are ApPIOPIL iate to the qucauon at hand. Where several approaCuea ap-
pear equally applicable it seems sensible to pply a few in order to compare out-
comes. Such a broad approach not only serves to provide a comparison o
techniques, but also ensures that interpretations of results are widely based and
so are less likely to be influenced by the foibles of one single technique. The mor-
phometrician must be aware of the theoretical and practical limitations of each

method and must apply this knowledge to each situation.

=t
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