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Natural selection may cause subpopu-
lations to diverge in shape as well as in
size. Traditionally, shape has been consid-
ered the most important element in the
study of intraspecific variation since “shape
tends to provide more reliable indications
than size on the internal constitution of
organisms” (Jolicoeur and Mosimann,
1960). Many authors have regarded size as
random noise and have sought ways of re-
moving it from their analyses although the
rationale behind this has been criticized
and deemed conceptually and mathemat-
ically flawed (e.g., Oxnard, 1978; Atchley,
1983; Jungers, 1984; Shea, 1985). There are,
however, many situations where it is im-
portant to consider shape and size inde-
pendently, without discarding informa-
tion about the latter, and others where size
has to be properly accounted for in studies
of size-correlated shape changes. There are
also situations where one wishes to stan-
dardize for size, not in order to remove it
but to allow comparison of samples in-
cluding juveniles and adults, or where sex-
ual dimorphism in size may confound the
analysis.

Several approaches have been suggested
for ways to remove size, or to standardize
for it. One immediate problem is that there
are no generally agreed-upon definitions
of size and shape. Both terms are often used,
but seldom are authors explicit about what
they mean by them. Three current ap-
proaches to a size definition can be rec-

ognized, each leading to different defini-
tions of shape (Bookstein et al., 1985;
Bookstein, 1989). The oldest and simplest
concept of size is to use one variable, for
example, height of a snail, as size, and re-
late other variables to this “size” by form-
ing a ratio with “size” as the denominator.
These ratios are then interpreted as shape
variables. Such ratios are probably still the
most common approach to quantifying
shape despite the statistical (Pearson, 1897;
Atchley and Anderson, 1978, and refer-
ences therein) and conceptual (“size” can-
not be imagined as just one particular sin-
gle linear dimension [Humphries et al.,
1981]) arguments against its use. A further
objection is that biometric analysis should
be based on several characters simulta-
neously, since selection presumably acts
upon whole phenotypes and not on single
characters.

Another way of looking at size is to as-
sume it corresponds to general factors, i.e.,
linear combinations of appropriate suites
of variables (see Mosimann and Malley,
1979; Bookstein et al., 1985). There are many
ways in which such a general-size factor
could be defined. It is most commonly tak-
en as the first eigenvector obtained from a
principal component analysis based on a
variance-covariance, or correlation, matrix
of log-transformed morphometric vari-
ables (Jolicoeur, 1963; Reyment et al., 1984).
This has a long history in morphometry
and its use can be traced back to Tessier
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(1938). Jolicoeur and Mosimann (1960) ar-
gued that the first principal component can
be viewed as size if all coefficients of the
first eigenvector are about equal and of the
same sign. The remaining eigenvectors are
then interpreted as shape if they have coef-
ficients of mixed signs and values. The
orthogonality imposed by principal com-
ponent analysis makes all vectors indepen-
dent and if the first vector is taken as size,
the remaining vector can then be called
“size-free” shape. Thus, the lack of corre-
lation between vectors is an artifact built
into the method itself and nothing inher-
ent in the data. On the contrary, from a
biological point of view, it is more realistic
to expect size-correlated shape changes, i.e.,
allometry. So, even if the first component
can be interpreted as size, the other com-
ponents are more realistically interpreted
as mixtures of size and shape (Mosimann,
1970; Sprent, 1972; Humphries et al., 1981).
Sprent (1972) further makes the point that
since allometry implies differences in shape
with size, it is unclear why any models are
designed to partition out the factor of
growth in multivariate analysis of shape.
Still, correction for size effect is of in-
terest for example when comparing sam-
ples that vary in size because they are taken
at different times of the year, or for studies
concerned with patterns of covariation
among variables. Various ways have been
suggested to improve principal component
analysis to better deal with size correction.
Humphries et al. (1981) supplemented the
technique with regression to find shape
discriminators, independent of size, be-
tween populations. This so-called sheared
principal component analysis is described
in Rohlf and Bookstein (1987). Somers
(1986) has recently suggested another
modification of principal component anal-
ysis that aims to partition out a size axis in
a population. Somers’ approach aims to ex-
tract “a size component equivalent to an
isometric size vector (. ..). The remaining
information (i.e., by definition shape and
random variation) is factored into com-
ponents of shape covariation.” The iso-
metric size vector is computed as a function
of the number of characters, as shown by

TaBLE 1. Pearson’s product-moment correlation
coefficients (absolute values) between specimen scores
along the size-constrained (Somers, 1986) first prin-
cipal component and the subsequent components for
three data sets: A. Measurements of thirteen mor-
phological characters of the rough periwinkle (Lit-
torina saxatilis) (n = 120), from Sundberg (1988). B.
Three characters from female painted turtle (Chryse-
mys picta marginata (n = 24), from Jolicoeur and Mos-
imann (1960). C. Five characters from sparrows (n =
49), from Manly (1986).

Data set: A B C

Correlation coefficient (r) between
size-constrained first component and

component

2 098 0.10 0.65
3 099 084 0.06
4 0.73 0.28
5 0.60 0.76
6 0.83

7 0.84

8 0.88

9 0.55

10 0.67

11 0.64

12 0.19

13 0.63

Critical two-tailed r-values

(P = 0.05): 0.18 040 0.28

Jolicoeur (1963), and is removed from the
correlation matrix prior to the component
analysis.

The method is available in the form of
a BASIC program from Somers. It extracts
an isometric size vector from a correlation
matrix based on log-transformed variables,
extracts eigenvectors from the manipulat-
ed matrix, and then computes the com-
ponent scores. When this program was used
for studying shape differentiation between
subpopulations of the periwinkle Littorina
saxatilis using 13 shell characters (Sund-
berg, 1988), it was found that most of the
12 subsequent component scores were cor-
related with those along the first compo-
nent to such a degree that the eigenvectors
were suspected not to be orthogonal. To
check whether this result was a conse-
quence of high intra-character correlations
in my data set, or a general feature of the
program and the approach, the size-con-
strained PCA was applied to two other data
sets: female painted turtles (from Jolicoeur
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and Mosimann, 1960), and Bumpus’ spar-
row data (in Manly, 1986). The results (Ta-
ble 1) show that all of these sets display
significant correlations between the first
(the size) and subsequent components. The
component scores are obtained by multi-
plying the data matrix by the eigenvectors;
thus, non-zero correlations are expected
even if the eigenvectors are orthogonal,
and, furthermore, correlations arise from
allometric shape changes. Truly orthogo-
nal eigenvectors should still not lead to
such high correlations as many of those
reported in Table 1 if the original character
values are properly scaled. This indicates
that there are some problems in either the
actual program, or in the approach in itself.
Rohlf and Bookstein (1987) have also iden-
tified potential problems with Somers’ ap-
proach and show that it will only lead to
orthogonal vectors under restricted con-
ditions. They suggest a simple matrix ma-
nipulation which will yield orthogonal
vectors and make Somers’ (1986) approach
similar in spirit to Burnaby’s (1966) meth-
od.
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