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Morphological variation in size and
shape has physiological, ecological and
taxonomic significance (e.g., Peters, 1983;
Schmidt-Nielsen, 1984; Bookstein et al.,
1985). As a result, there is considerable in-
terest in partitioning components of vari-
ation associated with size from compo-
nents associated with shape (e.g.,
Mosimann and James, 1979; Humphries et
al., 1981; Reist, 1985; Sampson and Siegel,
1985; Somers, 1986; Corruccini, 1987).

Size-related variation is often evaluated
within a bivariate framework involving
logarithmic transformations and regres-
sion (e.g., Smith, 1980; Seim and Saether,
1983). As such, log-log regressions with
slopes equal to 1.0 indicate bivariate
changes in size with no concomitant
change in shape (i.e., isometry), whereas
slopes differing from 1.0 reflect bivariate
changes in shape that are correlated with
changes in size (i.e., allometry). This bi-
variate conceptualization of size and shape
has been extrapolated to a multivariate
model summarized by principal compo-
nents analysis (PCA; e.g., see Jolicoeur,
1963). A PCA of a variance-covariance ma-
trix of logarithmically transformed mor-
phometric data generally extracts a first
component (i.e., PCl) that summarizes
variation associated with size, both iso-
metric and allometric size (e.g., see Joli-
coeur and Mosimann, 1960; Mosimann,
1970; Pimentel, 1979:56-63). Because allo-
metric size represents bivariate shape that
is correlated with isometric size, PC1 fre-
quently contains information in both size
and shape (e.g., Hopkins, 1966; Mosimann,
1970; Jungers and German, 1981; Hills,
1982; Corruccini, 1983).

The multivariate principal-component
model also introduced a multidimensional
concept of shape independent of size (i.e.,

the second and subsequent components
where size-correlated variation is incor-
porated into PC1; e.g., Jolicoeur and Mos-
imann, 1960). The bivariate analogue of
multivariate shape is the pattern displayed
by the log-log regression residuals. Just as
in regression, multivariate shape is contin-
gent on the analytical approach and asso-
ciated transformations, as well as the spa-
tial pattern of the data. In addition, the
study of multivariate shape is further com-
plicated by the problem of deciding how
many shape components contain non-triv-
ial information (e.g., Linn, 1968; Horn and
Engstrom, 1979; Gauch, 1982; Gibson et al.,
1984; Stauffer et al., 1985).

SIZE-CONSTRAINED PCA

In 1986, I proposed a modification to PCA
that produced a first axis summarizing
variation in isometric size alone (i.e., size-
constrained PCA; Somers, 1986). The first
axis was specified a priori as an isometric
size vector (e.g., see Jolicoeur, 1963) with
its associated eigenvalue (e.g., see Morri-
son, 1976:269). Isometric size was factored
from the correlation matrix of log-trans-
formed characters by subtraction (i.e., ma-
trix exhaustion) and the residual matrix was
subsequently factored into orthogonal ei-
genvectors and associated eigenvalues.
Unfortunately, size-constrained PCA pro-
duces negative eigenvalues when values
in the residual matrix exceed *+1.0 (see
Somers, 1986; Rohlf and Bookstein, 1987).

Sundberg (1989) reports that the iso-
metric size ‘component’ from size-con-
strained PCA is frequently correlated with
the shape components. Two related factors
contribute to these correlations. First, the
removal of isometric size only eliminates
isometric size variation such that correlat-
ed variation in allometric size is incorpo-
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rated into subsequent shape axes (this was
the objective of the size-constrained ap-
proach; see Somers, 1986). As a result of
the correlation between isometric size and
allometric size, the isometric size vector
will not be orthogonal (i.e., independent)
to subsequent eigenvectors, and thus the
associated component scores will also be
correlated. This type of correlation is ex-
pected a priori (Bookstein, pers. comm.);
however, the magnitude of such correla-
tions will depend on the relative amount
of allometric size variation.

Second, the removal of isometric size also
confounds calculation of the size-con-
strained component scores. In PCA,
component scores are calculated by post-
multiplying the original data by the ei-
genvector matrix. However, correlated
components can result if the data are not
appropriately centered and standardized
before multiplication with the eigenvector
matrix. That is, the data must conform with
the association matrix that was used to gen-
erate the eigenvectors. (The consequences
of this scaling artifact are rarely discussed,
but inter-component correlations are also
produced by a number of approaches, in-
cluding multigroup PCA [e.g., see Pimen-
tel, 1979:81-91] and sheared PCA [Rohlf
and Bookstein, 1987].)

When PCA is based on a variance-co-
variance matrix, orthogonal component
scores will result if the original data are
centered and standardized by subtracting
the character mean and dividing by N —
1 before post-multiplying by the eigen-
vector matrix (where N is the number of
individuals or observations). Similarly, if
the correlation matrix is employed, or-
thogonal component scores result if the
original data are centered and standard-
ized by subtracting the mean and dividing
by the standard deviation associated with
each character. However, in size-con-
strained PCA the eigenanalysis operates on
a correlation matrix from which the iso-
metric size effects have been subtracted.
The usual centering and standardization
associated with an analysis of a correlation
matrix is inadequate for the size-con-
strained procedure, and thus the original
size-constrained algorithm produces cor-

related component scores.-These correla-
tions include those between isometric size
and subsequent shape axes as described by
Sundberg (1989), as well as correlations be-
tween the shape components.

Thus, the correlations reported by Sund-
berg are not unexpected due to the corre-
lation between isometric and allometric
size, but the magnitude of the correlations
is confounded by improper centering and
standardization in the original algorithm.
Instead of Sundberg’s table 1, the effects
of the correlation between isometric and
allometric size should be evaluated with
angular comparisons of the eigenvectors
(i.e., the inverse cosine of the product of
any two eigenvectors; see Pimentel [1979:
87] for details). In the turtle example pre-
sented in Somers (1986; i.e., table 3), the
angle between the isometric vector and the
second eigenvector is 80.3°, and with the
third eigenvector is 88.1° (where 90° im-
plies that the two vectors are orthogonal).
Sundberg (1989) reports results for the 24
female turtles alone, and the correspond-
ing angles are 89.6° and 82.0°, respectively.
For comparison, the crayfish example (i.e.,
table 4 in Somers, 1986) produced an iso-
metric vector at 78.0° with the second ei-
genvector, and at 54.5° with the third.
However, in all three examples the angles
between the second and third eigenvectors
are all 90.0°, as would be expected from
any eigenanalysis.

When the original size-constrained al-
gorithm calculated component scores, the
orthogonal relationship between the shape
eigenvectors was distorted producing cor-
relations between scores for the shape
components. This distortion occurred be-
cause the raw data were inappropriately
scaled. In size-constrained PCA, the raw
data must be scaled by subtracting char-
acter means and dividing by the standard
deviation in the usual fashion, but because
the eigenanalysis operates on the residual
correlation matrix the observation means
must also be subtracted. This latter step
was omitted in the original algorithm and
is now incorporated into the current ver-
sion. Using this approach, the shape com-
ponents will be orthogonal if no negative
eigenvalues are produced in the eigen-
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analysis. However, if negative eigenvalues
occur, this modification will not eliminate
correlations between the shape compo-
nents, and thus alternate approaches to re-
move isometric size may be warranted.

One such alternative incorporates the
isometric vector into Burnaby’s growth-in-
variant approach to remove isometric size
effects (e.g., Burnaby, 1966; Rohlf and
Bookstein, 1987). Instead of subtracting the
product of the isometric eigenvector and
associated eigenvalue from the character
correlation matrix as in size-constrained
PCA, the P-by-P correlation matrix (of the
P characters) should be pre- and post-mul-
tiplied by a P-by-P matrix that is equivalent
to an identity matrix minus a P-by-P matrix
of 1/P values (Krzanowski, pers. comm;
also see Rohlf and Bookstein, 1987:360~
362). The resultant eigenvectors, including
the isometric vector, are orthogonal and
the component scores are also uncorrelated
(i.e., the original data are standardized by
subtracting character means and dividing
by the standard deviations as in a tradi-
tional PCA of a correlation matrix). Bur-
naby’s approach has been incorporated into
a version of the size-constrained PCA pro-
gram and the results have been confirmed
with several different data sets. Both pro-
grams are available upon request, and both
will analyze data matrices of up to 30 char-
acters for 500 individuals.

In addition, J. C. Gower (pers. comm.)
noted that an isometric size vector can be
removed quite simply by another related
approach. Specifically, isometric size can
be eliminated from a PCA using either a
correlation or covariance matrix if the data
are doubly centered. Thus, if a data matrix
of log-transformed characters is centered
by subtracting both row and column means
(i.e., much like principal coordinates anal-
ysis or reciprocal averaging; e.g., Gower,
- 1966; Legendre and Legendre, 1983:295-
299; Pielou, 1984:176-188), isometric size
variation will be removed. But in contrast
with traditional or size-constrained PCA,
the last eigenvalue from doubly centered
PCA equals zero. Thus, isometric size ef-
fects can be eliminated by subtracting the
row mean from each character for a given
observation (i.e., each row). In fact the vec-

tor of row means is highly correlated (r =
0.999; Somers, unpubl. data) with the first
component from the size-constrained ap-
proach (as it should be; Bookstein, pers.
comm.; also see Mosimann, 1970). Remov-
ing size effects with doubly centered PCA
contrasts with regression-based proce-
dures (e.g., Wood, 1983; Reist, 1985), but
using the vector of row means as a surro-
gate size measure is not new (e.g., Mosi-
mann, 1970; McGillivary and Johnston,
1987).

To compare results of the doubly cen-
tered PCA, I contrasted the first two shape
eigenvectors of doubly centered, tradition-
al, and Burnaby’s size-constrained meth-
ods using non-centered Procrustes analysis
(e.g., see Krzanowski, 1979, 1982). Based
on results from four data sets, the shape
eigenvectors from Burnaby’s and the log-
correlation approaches were most similar
in every case (i.e., using Gower’s residual
sum of squares; see Gower, 1975). But shape
eigenvectors from the doubly centered PCA
most closely resembled eigenvectors from
the log-covariance approach twice and the
log-correlation approach twice. The fact
that shape eigenvectors from the doubly
centered PCA failed to consistently resem-
ble the results from any one method may
reflect differences in the data sets, but more
likely the shape eigenvectors are quite
variable for each data set (i.e., have large
standard errors; see Gibson et al., 1984).
Obviously these are preliminary compar-
isons and the utility of doubly centered
PCA in morphometrics remains to be es-
tablished (e.g., Corruccini, 1987; Rohlf and
Bookstein, 1987).

SUMMARY

Sundberg (1989) identifies a problem of
inter-component correlation in the origi-
nal version of size-constrained PCA. Such
correlations were produced by two factors:
(1) the correlation between isometric and
allometric size, and (2) the improper scal-
ing of the raw data to calculate component
scores. A correction is implemented in the
current version of size-constrained PCA,
but unfortunately, this correction fails if
negative eigenvalues are encountered in
the eigenanalysis. As aresult, two alternate
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methods to extract isometric size vectors
are described. One approach incorporates
an isometric vector into Burnaby’s growth-
invariant method (Burnaby, 1966; Rohlf
and Bookstein, 1987). The second simply
involves doubly centering the log-trans-
formed data prior to PCA. The vector of
observation means that is subtracted from
the data in doubly centered PCA is almost
perfectly correlated with the isometric size
component from the size-constrained PCA,
but associated shape components may vary.
Detailed comparisons of the various meth-
ods that purport to isolate patterns of
multivariate size and shape are warranted
(e.g., see Corruccini, 1987; Rohlf and Book-
stein, 1987).
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“Size and Shape”: A Comment on Semantics

FRED L. BOOKSTEIN

Center for Human Growth and Development, University of Michigan,
Ann Arbor, Michigan 48109

As may be apparent from the preceding
interchange between Drs. Sundberg and
Somers, considerable semantic difficulties
are associated with the notions of “size,”
“shape,” and their relationships, both in
the systematics literature proper and in
biometrics more generally. The terms have
inconsistent sets of meanings separately;
furthermore, the copula “and”—as in “size
and shape”—carries a further assortment
of connotations all its own, connotations
likewise inconsistent from context to con-
text. In this note I would like to sort out
the various meanings of “size,” “and,” and
“shape” under five rubrics. When applied
to the same data, these approaches sort the
diverse phenomena of our morphometric
explanations—size variation, shape differ-
ence, allometry—into incompatible sub-
sets. Honest but very irritating discrep-
ancies can creep in if the investigator
intentionally discards part of this infor-
mation, as in projecting onto a subspace of
“only shape.” Although, at root, these ap-
proaches embody mere differences of al-

gebraic formula, they tend to be couched
in arguments about biological process in-
stead; and so we go on generating more
heat than light.

I will characterize the five techniques as
they apply to data sets of homologously
measured lengths. The same algorithms can
be applied, of course, to other sorts of data
as well, but the interpretations of “size”
and “shape” naturally may be different.
For the sake of diagrammatic clarity, I shall
present each of the five main terminolo-
gies as it applies to a very simple data set
of two measured lengths, A and B. (I most
definitely recommend against doing mor-
phometric analysis on such paltry data,
however! The minimum unit of morpho-
metric analysis is a triangle of landmarks.)
The variables A and B are taken to be mea-
sured lengths of variances o3 and ¢% with
covariance o,;. All bivariate associations are
taken as covariances, not correlations. (Be-
fore or after log transformation, the scale
of morphometric variables is crucial to their
analysis.)



