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Abstract.—The “shear” method of Humphries et al. (1981) is based on a path model intended
to explain differences in form by multiple factors: one for size and one or more for shape
differences. Its adaptation for “removing’ the effects of a within-population size-factor from
between-group morphometric analyses is presented in compact matrix form, simplified, and
compared to the method of orthogonal projection proposed by Burnaby (1966). While the size-
correction methods give similar results for most real data sets, Burnaby’s procedure with k = 1
(i.e., using a single composite size variable) is recommended for this purpose owing to its
geometrical and computational simplicity. An example based on artificial data demonstrates that
sheared principal components are not necessarily uncorrelated with size. Path modeling of size
and shape together is a different purpose than size-correction, and is better served by a different
procedure, [Allometric growth; morphometrics; size; shape; principal components analysis.]

A basic problem in the field of multi-
variate morphometrics is that of quanti-
fying shape differences among forms
separately from size differences. Unfortu-
nately, the terms “size” and “shape” are
subject to numerous definitions. In this pa-
per they will be assumed to correspond to
general factors (linear combinations of ap-
propriate suites of variables, Bookstein et
al., 1985)—rather than single, directly
measurable variables such as total length
or weight. Jolicoeur et al. (1984) suggest
that when one variable, such as body
weight, seems to describe size particularly
well, other size-related variables can be ad-
justed by being replaced by their residuals
about their regressions on the size vari-
able. Of course, when the correlations
among the size-related variables are very
high (as is often the case), variables such
as total length or weight may be very high-
ly correlated with one’s estimate for the
general-size factor. But it is still important
to make the conceptual distinction be-
tween an observed variable and a latent
factor score. For instance, residuals from
an observed size variable always share a
factor representing the measurement error
of the size variable ostensibly partialled
out (Bookstein et al. 1985:114). These re-

siduals are thus unsatisfactory in principle
as shape variables—they share a factor of
unique size variance. When one partials
out an estimate of size based on averaging
over several observed measurements, no
matter how well correlated with size, this
effect is reduced. General-size factors have
large positive correlations with size-relat-
ed variables in a study. Shape vectors, on
the other hand, may have positive, nega-
tive, and zero correlations with diverse
variables. Although there are many ways
in which an estimate of a general-size fac-
tor could be defined, it is most commonly
taken as the first eigenvector of a within-
groups variance-covariance (or correla-
tion) matrix based on log-transformed
morphometric variables (Jolicoeur, 1963).
The present paper is not concerned with
methods for estimating size, but only with
a class of adjustments that have been pro-
posed to remove the effects of size varia-
tion upon morphometric description.
There are several reasons why one might
wish to analyze shape differences among
populations separately from any differ-
ences there may be in size. Size is labile
ontogenetically, of course, but also phy-
logenetically; we could reasonably wish
that its variability not affect our systematic
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judgments. Should a sample for one pop-
ulation contain more juveniles than
another (perhaps because it was taken at a
different time of year), then observed dif-
ferences would not be the same as those
found when one compares the populations
at another time of year. Humphries et al.
(1981) point out that ordinary linear dis-
criminant functions or canonical variates
analysis do not circumvent this problem.
When samples differ with respect to both
size and shape (however defined), discrim-
inant functions and canonical axes must
also reflect these differences since these
methods construct optimal linear func-
tions for detecting differences among pop-
ulations based on the assumption that pres-
ent samples are representative of future
ones. While one hopes that one’s samples
reflect the major trends of covariation in
the populations, the observed range of sizes
can be expected to vary with the time of
the year, nutritional state, etc. The effects
of size can mask more subtle, and more
biologically interesting, patterns of co-
variation among suites of variables.

Proper correction for size effects is also
important for studies concerned with pat-
terns of covariation among variables. In
many morphometric studies the first ei-
genvector may account for 80% or more of
the variation among a set of variables. One
can, of course, design multivariate proce-
dures (for instance, the path analysis be-
low) that nevertheless accurately extract
factors after the first; but if conventional
component analyses or ordination tech-
niques are to be executed instead, one does
better at interpretation if size is “removed”
beforehand. If the organisms were of the
same size (or if the effect of size could be
removed statistically) then these factors
could now be seen to explain an apprecia-
ble proportion of the variance due to all
factors other than size.

There has been little agreement as to how
one should go about adjusting for the ef-
fects of size. Some workers propose simple
ratios (division of each variable by the es-
timate of size, or difference of log-trans-
formed variables). Others suggest regres-
sion using size as a covariate, and still others

recommend more complex multivariate
adjustments. In 1981 Humphries et al. pro-
posed a hybrid computational method,
“shearing,” for multivariate discrimina-
tion by shape in the presence of size vari-
ation. In Bookstein et al. (1985) these same
authors explained that their method was
at its root a path model for the explanation
of observed morphometric variables joint-
ly by one size factor together with one or
more factors for shape difference between
groups after adjustment for size. In this
approach, size is defined as the first factor
of the observed pooled within-group co-
variance matrix (usually of log-trans-
formed measurements), and group shape
difference is analogously characterized by
the first and subsequent factors of the same
matrix after the effects of size have been
held constant. The predicted value of each
morphometric variable takes the form of a
linear combination of factor scores con-
stant within groups, added to an allometric
contribution explaining a maximum of co-
variance within group (see Fig. 1).

This model appears not to have any sort
of optimal estimate in convenient form
whenever size does not exhaust the with-
in-group covariance structure. The “shear”
is an approximate solution in the case that
group differences are orthogonal to the first
few principal components of within-group
variation after the first. In this approxi-
mation (Bookstein et al., 1985:sec. 4.2), a
size factor having coefficients correspond-
ing to the first within-group principal
component is regressed out of several total
principal components (eigenvectors com-
puted from the total variance-covariance
matrix) following the first. Coefficients of
the resulting vectors are interpreted as path
coefficients relating the observed morpho-
metric variables to a shape difference factor
or factors; and scores, when scattered
against size, provide a useful decomposi-
tion of observed differences in the original
space of the (pooled) principal compo-
nents. The scatter of shape difference fac-
tor I against size approximates a shearing
of the scatter of the first two principal com-
ponents—hence the name of the tech-
nique. The scores on the shape factors are
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after Bookstein et al. (1985), in the context of two
groups only. Observed variables, X,, . . . , X, are mod-
eled as dependent variables regressed upon a group
shape difference factor G and a general size factor S.
(b) The equivalent analysis of covariance, showing
the origin of the path coefficients as regression coef-
ficients of observed data upon factors. AS, mean size
difference between the groups; s, allometric coeffi-
cient for the regression of X, upon §; d,, regression of
X, upon group controlling for size—one coefficient
of the shape difference factor.

not intended to be studied in isolation, but
only as augmented by size information and
other factors from other analyses.

In fairness to readers who may be puz-
zled, we should point out that this descrip-
tion does not resemble that of Humphries
et al. (1981), where the technique was first
introduced—but it describes the same
computation. Possibly because that initial
rationale was incomplete, the technique
does not seem to have been used in very
many published studies other than those
by members of the University of Michigan
Morphometrics Group (who have been
very prolific, e.g., Barbour and Chernoff,
1984; Humphries, 1984; Smith and Todd,
1984; Strauss, 1985; Strauss and Fuiman,
1985). In any case, the original published
description of the algorithm was not very
explicit. With the publication of Bookstein

et al. (1985) and their inclusion of a SAS
procedure developed by L. Marcus and D.
Swofford the shearing method has been
made available for wider use. It is also pres-
ent now in some statistics packages. For
this reason, it is important that the claims
and properties of this method be reviewed
and its advantages and disadvantages be
fully understood.

SHEARING

The method of shearing may be consid-
ered to incorporate a method of size-cor-
rection in the steps leading to generation
of the shape-difference factor or factors.
The originators had not intended that these
steps be considered in isolation, yet they
did not caution against this use. In any
case, when these steps are considered by
themselves, they differ substantially from
other approaches to “removing” size,
mainly because the resulting factors were
intended to be presented only in the con-
text of the path model of joint explanation
with size restored (Fig. 1). In the remainder
of this paper, we will restate the relevant
steps of the “shearing” algorithm, indicate
how it relates to other methods of size-
correction, and show how its differences
follow from its having been constructed
for a different purpose.

The Shear Algorithm

A recapitulation of Humphries et al.’s
(1981) method is presented here so that it
may be compared easily with the present
more mathematical version of their algo-
rithm. It is based in part on the SAS pro-
cedure given in Appendix A.5 of Bookstein
et al. (1985), but the notation was changed
to cast the algorithm into a more conven-
tional mathematical style.

1. Combine into a single matrix the mea-
surements on p variables for samples
from g groups, each of size n;. Transform
the variables to logarithms and:let X be
the resultant n by p data matrix, where
n = Zn, specimens and p is the number
of variables.

2. Compute the total variance-covariance
matrix, T. This matrix is based on de-
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viations of observations from the grand
mean vector and corresponds to the to-
tal mean-square matrix in multivariate
analysis of variance (MANOVA).

3. Perform a principal components anal-
ysis of the total variation in the study,
i.e., compute the eigenvector matrix, E,
of T. The eigenvectors correspond to the
columns of E and are assumed to be nor-
malized (E‘E = I). Let E, denote the first
column of this matrix, E, the jth, and E;;
a p by 2 matrix with E; as column 1 and
E; as column 2.

4. Construct a group-centered n by p data
matrix, Xc. In this matrix the mean for
each variable within each of the g sam-
ples is zero.

5. Compute the pooled within-group vari-
ance-covariance matrix, W, based on de-
viations of observations from the mean
vector of their group. Note that in com-
puting this matrix both Humphries et
al. (1981) and Bookstein et al. (1985) use
n — 1 as their divisor, instead of n — g,
the appropriate degrees of freedom. W
is the within-group or error mean square
matrix of MANOVA.

6. Compute the first eigenvector of W. This
vector, F,, is assumed to represent the
intra-group size vector.

7. Project the group-centered specimens
onto the size vector:

Q, = XcF,, (1)

where Q, is a column vector of n ele-
ments, representing the estimated sizes
of the group-centered specimens.

8. Then, to shear a variable (for example
E;, the jth eigenvector of E), perform
the following steps.

(a) Project the group-centered data onto
E, and E;:

P; = XcE,
P/ = X.E,. (2)
(b) Regress P/ on Q,. The slope, «a;, is
a; = (QiP)/(QiQy). (3)

The intercept is zero since the data
have been centered.

(c) Construct an estimate of Q, that lies
in the plane of P} and P;. This can
be found using multiple regression.
The partial regression coefficient
vector is

B, = (P{jP1)"'PjQ, 4)
where P/, is a matrix with P] as col-
umn 1 and P as column 2. As before,
the intercept is zero.

(d) Estimate H,, the size-adjusted E;, as

H =E — oE;B,. 5)

] ]
(e) Compute the scores for the n spec-
imens on this shape axis, using the
raw, uncentered data

S, = XH;. (6)

These scores (projections) may be
plotted against the usual projections
of the n points onto the first prin-
cipal component axis

P, = XE,. @)

The result is a shear since E, and H;
(or P, and S;) are not the result of a
rigid rotation of the original vari-
ables.

Notes on the Shearing Algorithm

To clarify the shear method, it is given
below using a more compact mathematical
expression rather than as a series of algo-
rithmic steps. It is convenient to define an
n by n matrix N whose elements are all
equal to 1/n. Then the data matrix centered
about the grand mean is just (I — N)X and
the total variance-covariance matrix is

T =X — N)X/(n — 1). ©)]

Similarly, one can define an n by n block
diagonal matrix M with the ith block being
an n; by n, matrix with all elements equal
to 1/n, where n;is the number of specimens
in the ith group. The group-centered data
matrix is then (I — M)(X), and the within-
group variance-covariance matrix is

W=X{I-MX/n—-g.

This matrix can be expressed in terms of
its eigenvectors, F, and eigenvalues, A:
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W = FAF. (10)
It can easily be shown that
Q, = (I — M)XF,, (11)
P/ = (I — M)XE, (12)
and
WEF, = \/F,. (13)

These relationships can be used to show
that

(14)

and

B, = (E,;FAFE,)'EjF\,. (15)

Both «; and B, are functions of the cosines
of the angles between the within and total
eigenvectors.

Let us consider the case in which there
are only p = 2 variables and we wish to
adjust the variable E, (i.e., j = 2). The cal-
culation of ; and B; as given above can be
greatly simplified and combined into one
step:

H,=E, — (FllEz)Fr

This is in the form of the standard Gram-
Schmidt “sweep” operation of matrix al-
gebra which removes that portion of the
variation of E, that can be predicted by F,.
The scale factor, FiE,, is the fraction of F,
to be subtracted from E,. It is also the cosine
of the angle between the first within-group
eigenvector and the second total eigen-
vector (since the eigenvectors are normal-
ized). The resultant vector, H,, is collinear
with F,, the second eigenvector of the
pooled within-group variance-covariance
matrix. This is not surprising since, in
2-dimensional space, any vector orthogo-
nal to F, must be parallel to F,. Thus, for
the case of only 2 variables, one does not
have to be concerned with the various
regression steps described above—one can
simply compute F, and interpret it for what
it is, the second within-group eigenvector.

For p > 2 variables, the computations are
more complex (largely due to the step in-
volving multiple regression) but they can
still be expressed in a form analogous to a

(16)

sweep operation. However, F, is no longer
being swept from E;. Thus ~

H,' = E,' - OljFi(/)/ (17)
where
Fi» = E,B;
=Elj(E'ljFAF’Elj)‘lE‘I,FIAI. (18)

The constant, a;, is the length of the pro-
jection of the jth total eigenvector, E;, onto
the size vector, F,. The “(j)” in the subscript
is to indicate that F] is, in part, a function
of j. It is not quite consistent to sweep out
F] instead of F,. We will return to this mat-
ter in the Discussion.

Another Formulation of the Shear Method

The procedure described above can be
interpreted as essentially constructing a
vector in the E,, E, plane that is orthogonal
to the projection of F, onto this plane.

The least squares projection of a size vec-
tor, F,, onto the E,, E, plane (based on the
group-centered data) is simply

Fl) = (F.E,)E, + (FEE)E.  (19)

The “(j)” in the subscript is to indicate that
F{ is dependent on which vector, j, is being
held constant. The adjusted E; vector is pro-
portional to

H/ = (FE)E, — (FE)E.  (20)

Figure 2 shows these relations diagram-
matically. SAS proc matrix operations that
accomplish the above steps are furnished
in the appendix. While similar in intent,
this method is not mathematically equiv-
alent to the method proposed by Hum-
phries et al. (1981). As pointed out below,
neither method is recommended if one’s
purpose is size adjustment alone.

BURNABY’S (1966) METHOD

Another procedure is to use Burnaby’s
(1966) simple method of sweeping the ef-
fect of one or more extraneous variables
from the data and then carrying out prin-
cipal components analysis, discriminant
function analysis, etc. on the adjusted data
matrix. The resulting axes, clusters, etc. are
then based on variation that is orthogonal
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to the vectors corresponding to the vari-
ables being held constant. For example,
Burnaby suggested, one could hold con-
stant the first eigenvector of the variance-
covariance matrix from each of the g
populations. In his example he held two
“nuisance factors” constant—F, and a phe-
notypic response to an ecological gradient.
We will consider the case in which one
holds constant a single vector, F,.

Several different (but mathematically
equivalent) algorithms can be used. Bur-
naby (1966) suggested the following meth-
od, which is quite compact. If F, is the p
by 1 size-vector that one wishes to correct
for, then the matrix

L =1, — F,(F:F,)'F, (21)

projects any vector onto the subspace com-
plementary to F,. L is an idempotent sym-
metric matrix of order p by p and I, is the
p by p identity matrix. Then the jth shape
vector is

H” = LE, 22)

An adjusted data matrix, X', can be com-
puted as

X' = XL. (23)

SAS proc matrix operations that accom-
plish the above steps are furnished in the
appendix.

The steps are mathematically equivalent
to projecting the n specimens onto the
within-group eigenvectors (all min (p, n —
g) of them), replacing the values for the
projections onto the first axis with zeros,
and then rotating the n specimens back
into the original space. They will now have
different values since the effects of differ-
ences in within-group size have been com-
pletely removed and the data points now
all lie on a hyperplane within the original
space. The X' matrix may then be used in
place of X for the computation of size-ad-
justed principal components analysis, clus-
ter analysis, discriminant analysis, canon-
ical variates analysis, etc. Rao (1966) and
Gower (1976) present various extensions
and generalizations of Burnaby’s (1966) ap-
proach. Reyment and Banfield (1976) fur-
nish an example.

Eg

"
Fie R

Fi)
Eq

FiG. 2. Geometrical relationships based on the al-
ternative formulation of the shear procedure. Coor-
dinate axes have been rotated to correspond to the
total eigenvectors. The first within eigenvector is pro-
jected onto the 1,2 and 1,3 planes, and the shape vec-

tors H, and Hj, respectively, are in these planes and
orthogonal to the projections.

If one wished to retain some size infor-
mation in the analysis (as in the shear
method), then one could append the col-
umn vector XE; to the X' matrix. Alterna-
tively, one could use XF, (using within-
group size), which seems a bit more logical.
In the latter case, however, distances among
the points would then be identical to what
they were originally and thus a cluster
analysis or discriminant analysis of the
“adjusted” data would yield results iden-
tical to those obtained using the original
data. Thus no correction to the interpoint
distances will have been accomplished.
Since E, and F, are usually highly corre-
lated, the use of E, will usually have a sim-
ilar result. Of course, the coefficients them-
selves will have been changed. These were
the major interest in Bookstein et al. (1985),
notsize-correction itself. Their simulations
showed that their method was able to re-
cover the original coefficients in their path
model. It would be interesting to extend
their simulations to see how well the use
of Burnaby’s method would enable the
coefficients to be estimated.

The idea behind the approach of Somers
(1986) is closely related. He proposed that
one compute the eigenvectors of a corre-
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TABLE 1. Artificial data used to illustrate differ-
ences among the various methods for size adjustment.
Observations were drawn from two log-normally dis-
tributed populations.

Variables

Group 1 2 3 4

1 109.8 48.7 128.1 17.7
14.9 317 54.7 8.6

237 25.4 201.5 20.0

14.1 35.3 213.9 34.0

41.2 35.8 132.0 31.3

18.8 20.3 67.2 8.0

47.6 16.6 234.8 29.7

21.3 4.5 106.6 25.6

60.0 20.7 174.0 38.9

33.9 18.8 98.5 11.4

2 18.4 8.5 3.1 153
16.8 9.0 27 12.6

45.7 17.3 3.2 27.6

32.0 7.5 3.3 11.5

75.1 115 2.0 16.1

18.9 7.9 1.5 13.6

49.5 68.7 4.6 26.2

15.8 26.1 1.7 9.3

7.9 22.3 24 17.0

11.1 9.9 3.2 30.0

lation matrix from which the effects of an
isometric size vector, V,, has been re-
moved. In his formulation, the reduced
correlation matrix is

1
R, =R — ;VﬁRVl (24)
where
Vf1 = (p—o,sl P_O'Sr .., p—O.S)‘ (25)
But this reduces simply to
R,=R - R. (26)

A factorization of R, will yield vectors or-
thogonal to V, only if the average corre-
lation in each row (and column) of R is the
same. This residual matrix has some un-

fortunate properties—“correlations” in the
residual matrix may fall outside of the range
—1 = r = 1 and, as Somers (1986) points
out, some of the resulting eigenvalues may
be negative. One could use V, rather than
F, in Burnaby’s (1966) method. Then the
eigenvectors of

R; = LRL (27)
would be orthogonal to V, as Somers (1986)
intended and correlations computed from
the residual matrix, R}, will fall within the
expected range.

EXAMPLE

The bivariate test data given in Book-
stein et al. (1985:105) cannot be used to
illustrate the differences among the pro-
cedures described above since they give
equivalent results when there are only 2
variables.

Table 1 furnishes a simple artificial da-
taset. There are n, = 10 specimens in g = 2
groups for which p = 4 variables have been
recorded. The data are intended only to
illustrate some of the numerical properties
of the methods. They are not intended to
be entirely realistic (whatever that means).
This dataset was constructed so as to em-
phasize the differences among the meth-
ods for size-correction. The results given
below are all based on log-transformed
data. Table 2 gives E, the eigenvectors of
the total variance-covariance matrix, and
F,, the first eigenvector of the within-group
variance-covariance matrix. The percent-
ages of the total variance explained by the
total eigenvectors are: 80.0%, 9.5%, 6.8%,
and 3.7%. The variances explained by the
within-group eigenvectors are: 45.9%,

TABLE 2. Normalized eigenvectors, E and F,, of variance-covariance matrices based on the log transforms

of the data from Table 1.

Total eigenvectors

Variables 1 2 3 4 Within eigenvector
1 0.10487 0.73147 0.61281 —0.28005 0.69483
2 0.13366 0.64085 —0.75183 0.07871 0.56532
3 0.98204 —0.17791 0.01659 —0.06063 0.30372
4 0.08210 0.15041 0.24277 0.95483 0.32461
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TABLE 3. Sheared and Burnaby adjusted axes premultiplied by the transpose of the matrix of normalized

total eigenvectors, E, in Table 2.

Total Sheared axes

Burnaby adjusted axes

eigen-
vectors 2 3 1 2 3 4
1 —0.51911 —0.10103 0.77595 —0.40959 —0.04005 —0.06695
2 0.28997 0.00000 —0.40959 0.25122 —0.07322 —0.12239
3 0.00000 1.00078 —0.04005 —0.07322 0.99284 —0.01197
4 —0.00000 0.00000 —0.06695 —0.12239 —0.01197 0.97999
28.8%, 21.8%, and 3.5%. While there is a DISCUSSION

within-group size component, it is not as
strong as it often is in real morphometric
data.

Tables 3 and 4 give Humphries et al.’s
sheared axes, Burnaby’s adjusted axes, and
the alternative sheared axes—all premul-
tiplied by the transpose of the matrix E of
normalized eigenvectors. This rotation by
E yields coordinates of the vectors relative
to the total eigenvectors used as coordinate
axes. This makes it easier to visualize the
geometric relationships among the vec-
tors. One can see that H, is orthogonal to
E, and E, as is Hy. Burnaby’s axes are not
(nor were they intended to be).

Table 5 gives the correlations among the
H,, Hj, and H; for j = 2 and 3 (4 is not
included to save space). One can see that
the correlations among the alternative
shape axes are quite high. On real datasets
they are apt to be even higher. Thus the
decision about which method should be
used is not likely to be resolved by empir-
ical studies—one should decide in prin-
ciple what one means by size adjustment.
Note also that the pairs of adjusted eigen-
vectors are no longer orthogonal and thus
eigenvectors would have to be computed
again if one wished to have a set of or-
thogonal axes. The correlations between
size, F;, and the shape vectors H, and H,
are 0.00875 and 0.03665 (computed as co-
sines of the angles between vectors). While
these correlations are quite small, they
demonstrate a lack of independence be-
tween size and the shape vectors (if one
were to try harder, other examples could
no doubt be found with larger correla-
tions). On the other hand, the correlations
of size with Burnaby’s adjusted axes and
with the alternative shared axes are zero.

As we noted in the discussion of step
8(c) of the original algorithm, the method
of shearing sweeps out a projection, Fy),
of size rather than size, F,, itself. Neither
Humphries et al. (1981) nor Bookstein et
al. (1985) explain this recommendation.

In another perplexity, the originators
recommend that the sheared principal
component axes be obtained by shearing
each one (after the first) separately rather
than simultaneously by using a method
based on a multiple regression analysis us-
ing all the factors at once. For example,
when shearing E, one projects into the E,,
E, plane but when shearing E; one projects
into the E,, E; plane. Thus the various
sheared axes are, in a sense, not really in
the same subspace. Neither of these ma-
neuvers seems reasonable in the context of
size-correction; rather, it flows from the
original purpose of shearing, which is the
estimation of a more complex path model
(Fig. 3) explaining all covariances among
a vector of size measures by a combination
of multiple shape difference factors to-
gether with size. This model, as we said,
appears difficult to estimate in any con-
venient fashion. This model could be es-
timated rather formally by a least-squares

TABLE4. Sheared axes (based on the reformulation
presented in the present paper) premultiplied by the
transpose of the matrix of normalized total eigenvec-
tors, E, in Table 2.

Total
eigen-
vec-

Reformulated sheared axes

tors 2 3 4 Size

1 —0.42103 —0.17323 —0.27432 0.47334
2 0.23031 0.00000 0.00000 0.86532
3 0.00000 0.96903 0.00000 0.08462
4  —0.00000 0.00000 0.91803 0.14144
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TABLE 5. Matrix of correlations among size-adjusted axes from Tables 3 and 4. “Ref.” corresponds to the
reformulation of the sheared axes as presented in this paper. -

Sheared axes

Ref. sheared axes

Burnaby axes

“Size”

H, H; Hj Hj HY HY Fy
H, 1.00000 0.08769 0.99996 0.15363 0.95787 —0.00074 0.00875
H, 0.08769 1.00000 0.08812 0.99709 —0.06327 0.99541 0.03665
H, 0.99996 0.08812 1.00000 0.15439 0.95748 0.00000 0.00000
H; 0.15363 0.997090 0.15439 1.00000 0.00000 0.98794 0.00000
Hy 0.95787 —0.06327 0.95748 0.00000 1.00000 —0.14661 —0.00000
H7 —0.00074 0.99541 0.00000 0.98794 —0.14661 1.00000 0.00000
F, 0.00875 0.03665 0.00000 0.00000 —0.00000 0.00000 1.00000

fit of a suitably constrained covariance
structure to an augmented data matrix
(group membership dummy variables ap-
pended to the list of morphometric vari-
ables). This would extend the least-squares
spirit of Sewall Wright’s original path-an-
alytic modeling. The shear method is a sim-
plification of such a procedure that as-
sumes each between-group PC; after the
first is a surrogate for the (j — 1)st factor
H,_, of group shape difference indepen-
dent of all the other H;s except for their
joint confounding by size. (This is clearly
untenable when extended to all the sub-
sequent PCs, but it is realistic for the first
few, as long as the PCs fail to tap “true”
factor-based within-group covariation.)
Separately for each subscript j > 1, the
shear takes the space of variation spanned
by PC, and PC, to approximate the space
spanned by the size factor S and the shape
difference factor H,_,. There is no equiv-
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FiG.3. Path diagram underlying the shearing pro-
cedure for k groups. The covariances among a set of
observed (or log-transformed) variables are explained
by variation in between-group factors together with
a within-group size factor differing between groups
in both mean and variance. There is no apparent an-
alytical solution for this method.

alent to this purpose in the context of “size
correction” and it is unnecessary outside
the context of path-modeling.

In other words, the shear method pre-
sumes that within-group correlations of the
PCs merely express covariances “equal and
opposite” to those induced by mean size
as it varies separately from group to group
in shape difference space. The appropriate
regression estimate of any single observed
variable X, —the equation yielding the path
coefficients in Figure 3—follows from the
path diagram. It is the summation of many
independent ancovas, each like that in Fig-
ure 1b. The logic of multiple regression
does not appear here at all—the correction
for size of each PC; after the first is a matter
of PC, and PC, alone. The sweeping of
within-group Size out of the successive
principal components after the first may
be computed in one single operation as
long as the residuals are treated as distinct
path coefficients apposite to distinct shape
difference factors regardless of their ob-
servable covariances.

As a further consequence of the differ-
ence in purpose between path-modeling
and size-correction, while Humphries et
al. (1981) state that H; is uncorrelated with
intra-group size (F,), it need not be true
for all datasets since the effects of intra-
group size, F,, are not being removed from
E. Only a function of it, Fy, is being re-
moved. As demonstrated in the examples
section, the correlation between H, and F,
need not be zero. The correlation will be
zero only if F, and E, happen to be or-
thogonal. In practice, the correlation will
often be rather small since E; and F, are
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often similar (and thus F, should be nearly
orthogonal to E, because E, is orthogonal
to E;). The magnitude of the deviation from
orthogonality clearly depends upon the
datasets being analyzed. Bookstein et al.
(1985:104) point out that the sheared H;_,
is an approximation to a size-orthogonal
factor only when F, lies in the plane of E,
and E,. Their condition for orthogonality
does not quite agree with the one given
here. Bookstein et al. (1985) suggest that
the researcher plot S; against P, to verify
that within-group size has been removed
from the vector E,. But it would be better
if P, were replaced by Q, for this purpose
since P, is a function of the total not the
within-group variance-covariance matrix.

As shown above, the eigenvectors are no
longer orthogonal after they have been ad-
justed. Thus one must then analyze the ad-
justed data using principal components
analysis, cluster analysis, factor analysis, or
canonical variates analysis (see Gower,
1976), etc.

Humphries et al. (1981) rule out Bur-
naby’s technique because its generaliza-
tion, adjusting for distinct (non-parallel)
size vectors in the different groups, is like-
ly to make corrections that are undesirable.
For example, since two non-parallel size
vectors define a plane, Burnaby’s gener-
alization would consider all variation in
this plane to be due to size and would pro-
jectall points onto the subspace orthogonal
to this plane. Indeed, in the case of p = 2
variables, all of the variation would be con-
sidered owing to size differences. None of
the techniques under discussion here in-
clude explicit procedures for dealing with
non-parallel size vectors in different
groups. In the special case of nonlinear al-
lometry (correlation of mean size with al-
lometric slopes), the path model underly-
ing the shear method seems most easily
extended by the use of a nonlinear regres-
sion on size.

Bookstein et al. (1985:103) make an ad-
ditional objection to Burnaby’s method.
They state that Burnaby’s method “has coef-
ficients that are not loadings and that can
therefore not be compared among them-
selves.” What was meant was that there is

no path model to suggest that the adjusted
axes should correspond to biologically
meaningful underlying factors—they are
simply adjusted axes. This objection, then,
is just a restatement of the difference in
purpose between path modeling and size-
correction. One technique emphasizes the
coefficients of factors of form approxi-
mately constant within groups, while the
other emphasizes the ordination of taxa (as
by distances between them) somewhat in-
dependently of the space in which this or-
dination is achieved.

Subsequent multivariate analyses may
require that the adjusted data conform to
the usual assumptions of multivariate nor-
mality and homogeneity of variance-co-
variance matrices in order for convention-
al significance tests to be valid. In
particular, Burnaby (1966) warns that the
vector F, should be estimated indepen-
dently of the rest of the data. This implies,
for example, that the first eigenvector of
the within-groups variance-covariance
matrix cannot be used if conventional sig-
nificance tests are to be used. Neither he
nor subsequent workers indicate how se-
rious this problem is or offer alternative
procedures. This is unfortunate since F, is
very commonly used to estimate the gen-
eral size factor. One obvious solution would
be to estimate size by using a small set of
size-related variables that are not to be in-
cluded in the subsequent analyses. Vari-
ables which are known (from previous
work) to be very high correlated with size
could be used with little loss of informa-
tion in the main study since they would
have very little variance after the effects
of size had been removed. Another pos-
sibility is to use an isometric size vector
defined a priori (e.g., Somers, 1986).

In practice, for many datasets the various
methods described above will give very
similar results since the correlations among
E,, F,, and size-related characters are often
very high. Of the methods considered in
this paper, only the method due to Bur-
naby (1966) simply and directly constructs
variables orthogonal to a variable that is
considered to represent size and would
therefore seem to be the method of choice
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for this purpose. Other purposes, such as
the explanation of covariances among size
variables, require other methods.

It should be emphasized that the anal-
ysis given above assumes that it makes
sense to define size as the first eigenvector
of the within-group variance-covariance
matrix for log-transformed variables. Us-
ing this eigenvector naturally leads one to
the use of vectors orthogonal to this vector
being considered shape vectors. This may
not be the best strategy for actual studies
(especially if the sample of organisms does
not differ very much in size). The first
within-group eigenvector need not have
anything to do with size. It simply gives
the direction in which there is maximal
variation within the populations. This is
usually strongly related to size; but if sim-
ilar-sized individuals are used then the first
eigenvector could represent some other
factor. For such cases, Mosimann and James’
(1979) procedure—first producing geo-
metrically meaningful definitions of shape
(proportionality) and size and then study-
ing their relationships to each other and
to time—can lead to more appropriate in-
terpretations. Notions of growth allometry
that are embodied in coefficients of size by
the eigenvector approach are encoded in-
stead in size-shape correlations by the geo-
metric approach. The biological context of
these two interpretations is, of course, the
same. Bookstein et al. (1985:appendix A4)
also present methods that have this prop-
erty whenever landmark location data are
available (rather than mere measured dis-
tances, the starting point for the more con-
ventional multivariate approaches to mor-
phometrics discussed in this paper). See
also Bookstein (1986).
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APPENDIX
SAS Procedures

The following is a SAS Proc matrix pro-
gram to compute the reformulation of the
shear procedure as described in the manu-
script. It can be added to the end of the
SAS procedure given in Bookstein et al.

(1985:243-245). Alternatively, it can be
added after the “EIGEN AP EP QP;” state-
ment and the rest of the lines in their pro-
cedure can be discarded.

* reformulation of the shear method;

shraxes = e(,1);

flel = ep(,1)'*e(,1);

do j = 2 to &retain;
flej = ep(,1)'*e(,j);
fpp = flel*e(,1) + flej*e(,j);
sclfact = flel*inv(fpp’*fpp);

/* first axis is not sheared */

/* scale factor */

hshr = (flej*e(,1) — flel*e(,j))*sclfact;

shraxes = shraxes | hshr;

For Burnaby’s (1966) method the follow-
ing statements can be added at the end of
the SAS procedure given in Bookstein et
al. (1985:243-245). Alternatively, they can

/* append the jth sheared axis */ end;

be added after the “EIGEN AP EP QP;”
statement and the rest of the lines in their
procedure can be discarded.

/* construct an orthogonal operator*/
L = I(&nvar) — ep(,1)*inv(ep(,1)'*ep(,1))*ep(,1)’;

HPP = L=e;
XP = x*L;

/* Burnaby adjusted vectors */
/* adjusted data */



