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Syst. Zool., 30(3), 1981, pp. 268-280 

THE GEOMETRY OF CANONICAL VARIATE ANALYSIS 

N. A. CAMPBELL AND WILLIAM R. ATCHLEY 

Abstract 
Campbell, N. A. (Division of Mathematics and Statistics, CSIRO, Wembley 6014, Western 

Australia) and W. R. Atchley (Department of Entomology, University of Wisconsin, Madison, 
Wisconsin 53706)1981. The geometry of canonical variate analysis. Syst. Zool., 30:268-280.- 
The geometry of canonical variate analysis is described as a two-stage orthogonal rotation. 
The first stage involves a principal component analysis of the original variables. The second 
stage involves a principal component analysis of the group means for the orthonormal vari- 
ables from the first-stage eigenanalysis. The geometry of principal component analysis is also 
outlined. Algebraic aspects of canonical variate analysis are discussed and these are related 
to the geometrical description. Some practical implications of the geometrical approach for 
stability of the canonical vectors and variable selection are presented. [Multivariate analysis; 
canonical variate analysis; discriminant analysis; principal component analysis.] 

Canonical variate analysis is one of the 
most important and widely used multi- 
variate statistical techniques in biological 
research. The procedure was developed 
by R. A. Fisher (1936) and further ex- 
panded by M. S. Bartlett, P. C. Mahal- 
anobis, and C. R. Rao to examine several 
significant problems relevant to system- 
atic biology. These include separation of 
groups of morphologically similar organ- 
isms; ascertainment of patterns of char- 
acter covariation, such as size and shape 
patterns, between groups; assessment of 
intergroup affinities; and the allocation of 
individuals to pre-existing groups. 

Canonical variate analysis is discussed 
widely in modern textbooks on multi- 
variate analysis (e.g., Kshirsagar, 1972: 
Ch. 9). However, most treatments stress 
algebraic, computational and inferential 
aspects, rather than geometrical under- 
standing (see also Dempster, 1969). 

In this paper, we describe the geome- 
try of canonical variate analysis, Mahal- 
anobis D2, and principal component anal- 
ysis. The algebra underlying this 
geometrical discussion is provided. Some 
practical implications of the geometrical 
approach are presented. 

EIGENANALYSIS AND PRINCIPAL 
COMPONENT ANALYSIS 

Canonical variate analysis can be con- 
sidered as a two-stage rotation. The first 
stage involves a principal component 

analysis or eigenanalysis of the original 
variables. The second stage involves an 
eigenanalysis of the variation between 
the group means for the variables from 
the first-stage principal component anal- 
ysis. 

The eigenanalysis of a symmetric ma- 
trix is a fundamental notion in multivari- 
ate analysis. It forms the basis of the cal- 
culations for a principal component 
analysis. The ideas and concepts in prin- 
cipal component analysis are important 
for both the geometric and algebraic pre- 
sentations of canonical variate analysis 
given later. 

A principal component analysis can be 
considered as a rotation of the axes of the 
original variable coordinate system to 
new orthogonal axes, called principal 
axes, such that the new axes coincide 
with directions of maximum variation of 
the original observations. Consider the 
line or axis passing through the ends of 
the elliptical cluster of points in Figure 
1. Project the original data points onto 
this axis. The point ylm is the projection 
of the point (xim, x2m) onto the axis de- 
fined by the direction Y1. This axis has 
the property that the variance of the pro- 
jected points Ylm, m = 1, . . . , n, is greater 
than the variance of the points when pro- 
jected onto any other line or axis passing 
through (x1, x2). Any line parallel to Y1 also 
has the property of maximum variance of 
the projected points. It is however con- 
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1981 GEOMETRY OF CANONICAL VARIATE ANALYSIS 269 

X2- 
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FIG. 1.-Idealized representation of scatter diagram for two variables, showing the mean for each vari- 
able (xi and x2), 95% concentration ellipse, and principal axes Y1 and Y2. The points Ylm and Y2m give the 
principal component scores for the observation xi = (Xim, X2m)T. The cosine of the angle 0 between Y1 and 
X1 gives the first component ull of the eigenvector corresponding to Y1. 

venient geometrically to use the first rep- 
resentation. 

The property of maximum variation of 
the projected points defines the first prin- 
cipal axis; it is the line or direction with 
maximum variation of the projected val- 
ues of the original data points. The pro- 
jected values corresponding to this direc- 
tion of maximum variation are the 
principal component scores. The first 

principal axis is often called the line of 
best fit since the sum of squares (SSQ) of 
the perpendicular deviations of the orig- 
inal data points from the line is a mini- 
mum. Successive principal axes are de- 
termined with the property that they are 
orthogonal to the previous principal axes 
and that they maximize the variation of 
the projected points subject to these con- 
straints. For two variables, only one more 
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270 SYSTEMATIC ZOOLOGY VOL. 30 

axis or direction can be determined; this 
second axis is represented by Y2 in Fig- 
ure 1. 

In practice, a principal component 
analysis consists initially of finding the 
eigenvalues ei and eigenvectors ui of the 
sample covariance or correlation matrix. 
The eigenvalue is simply the usual sam- 
ple variance of the projected data points. 
The components of the eigenvector are 
the cosines of the angles betweern the 
original variable axes and the corre- 
sponding principal axis. These cosines 
are often referred to as direction cosines. 
In Figure 1, the cosine of the angle be- 
tween the original variable axis X1 and 
the first principal axis Y1 gives the first 
component u1l of the first eigenvector u1, 
while the cosine of the angle between 
the ordinate variable X2 and Y1 gives u12. 
Similarly, the cosines of the angles be- 
tween the second principal axis Y2 and 
the original coordinate axes give the com- 
ponents u21 and u22 of u2. 

An essential notion in multivariate 
analysis is that of a linear combination of 
variables; it is fundamental to both ca- 
nonical variate analysis and principal 
component analysis. Consider v variables 
xl, *. , xv, written as the vector x = (x1, 
... . xv)T, and the coefficients c1, ... ., cv 
written as the vector c. Then a linear 
combination is defined by 

v 

y = clxl + ... + cVxV = cx 
i=1 

=TX, 

where y is the new variable defined by 
the linear combination of the original 
variables. For example, if the coefficients 
are all unity (ci = 1 for all i), then cTx = 

v 

2 xi, which is just the sum of the vari- 
i=l 
ables. This can be written in matrix no- 
tation as lTx, where I denotes a vector 
of l's. 

A principal component analysis seeks 
a linear combination of the original vari- 
ables such that the usual sample variance 
of the resulting values is a maximum. 
The components of the eigenvectors u1 

(Fig. 1) provide the coefficients which 
define the linear combination, while the 
resulting values or scores are the pro- 
jected points Yim. That is, Ylm = ulixim + 
u12x2m, and Y2m = U21Xlm + U22X2m. In ma- 
trix notation, Yim = UiTXm, where xm = 
(XIm, .. ., Xvm)T denotes the mth observa- 
tion vector. The sample variance of the 
projected points Ylm gives the first eigen- 
value e1. Some constraint on the com- 
ponents of u1 is necessary, otherwise the 
variance can be made arbitrarily large. 
The usual one to adopt is that z u1i2 = 1 

i=l 
or that ulTu1 = 1. Maximization of the 
variance of the Ylm subject to the given 
constraint leads to the eigenequation 

(V - eI)u= (1) 

or 

Vu = ue 

where V denotes the within-group co- 
variance matrix. Let 

U = (ui, ***XUV) 

denote the matrix of eigenvectors, and let 
the diagonal matrix 

E = diag(e1, . . . , ev) 
denote the matrix of eigenvalues. Then 
the eigenequation becomes 

V= UEUT (2) 
v 

= 2 e1u1ui. 
i=l 

The eigenvectors satisfy UTU = I and 
UUT = I. 

An important result, which follows by 
taking the trace of both sides of (2), is that 
the sum of the variances of the original 
variables is equal to the sum of the ei- 
genvalues. Since each successive princi- 
pal component accounts for a maximum 
amount of the variation, subject to being 
uncorrelated with the previous compo- 
nents, e1 > e2 > ... > ev. 

Principal component analysis is con- 
sidered to be a useful tool when the first 
few principal components explain much 
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of the variation, so that a few bivariate 
scatter plots of the scores summarize the 
multivariate data. For morphometric 
data, it is often found that the elements 
of the first eigenvector are all positive; an 
increase in each variable results in a gen- 
eral increase in the value of the principal 
component score. For this reason, the 
first component is often termed a size 
component (e.g., Jolicoeur and Mosi- 
mann, 1960). 

CANONICAL VARIATE ANALYSIS- 
GENERAL IDEAS 

In a canonical variate analysis, linear 
combinations of the original variables are 
determnined in -such a way that the differ- 
ences between a number of reference 
groups are maximized relative to the vari- 
ation within groups. It is hoped that the 
group configuration can be adequately 
represented in a two or three dimen- 
sional subspace defined by the first two 
or three canonical vectors. The first ca- 
nonical vector is given by the coeffi- 
cients of the linear combination which 
maximizes the ratio of the between- to 
within-groups SSQ's for the resulting ca- 
nonical variate. The corresponding ratio 
is referred to as the canonical root. Suc- 
cessive linear combinations of the origi- 
nal variables are chosen to be uncorre- 
lated both within and between groups. 
Pythagorean distance is then appropriate 
for interpreting a scatter plot of the group 
means, with the important canonical vari- 
ates as the coordinates. 

Figure 2 depicts a typical situation for 
two variables. The concentration ellipses 
reflect the clustering of the observations 
in the main body of the data. The points 
Xim = (xIIm, x21m)T and x2m represent typ- 
ical observations. The vector c represents 
the direction of the calculated canonical 
vector. 

The point representing the observa- 
tion ylm gives the projection of the ob- 
servation xlm onto the canonical vector. 
For convenience, xkm and Ykm will be 
used to -denote both the observation 
and the point representing the observa- 

tion. The observation Yim is given by the 
linear combination clxllm + . . . + Cvxlvm = 

cTXim. The observation Ykm is the canon- 
ical variate score for the mth observation 
for the kth group. Hence the point Y2m 
represents the projection of the observa- 
tion X2m onto the canonical vector. Simi- 
larly the points -Yk represent the projec- 
tions of the group means onto the 
canonical vector. 

When all observations Xkm are pro- 
jected onto the canonical vector, a distri- 
bution of scores for each group will re- 
sult. If the underlying distribution of the 
vectors of observations is multivariate 
Gaussian, then the histograms of canon- 
ical variate scores will follow the familiar 
bell-shaped appearance of a univariate 
Gaussian density. It is important to real- 
ize that the actual canonical variate 
scores do not follow a univariate Gauss- 
ian distribution, since the components of 
the vector of coefficients c are them- 
selves realizations of random variables 
(e.g., Kshirsagar, 1972:197). 

The orientation or direction of the ca- 
nonical vector c is such that the ratio of 
the between- to within-groups SSQ from 
the one-way analysis of variance of the 
projected points Ylm, m = 1, . .. , n1; Y2m, 
m= 1, ..., n2; ...; Ygm, m= 1, .. ., ng, 
is greater than that for any other orien- 
tation of the canonical vector. 

The ratio of the between-groups to the 
within-groups SSQ gives the canonical 
root. The cosines of the angles between 
the canonical vector and the original co- 
ordinate axes give the components of the 
canonical vector. The projected points or 
observations are the canonical variate 
scores. 

The property of maximum ratio of be- 
tween- to within-groups variation defines 
the first canonical vector. This first axis 
is again a line of best fit, though the fit is 
now to the group means, and the shape 
of the concentration ellipsoids must be 
taken into consideration. A geometrical 
explanation is given in the next section. 

In canonical variate analysis, the de- 
gree of correlation between, and the vari- 
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ances of, the original variables determine 
the degree and direction of maximum be- 
tween- to within-group variation. Vari- 
ables with high positive within-groups 
correlation, and negative between-groups 
correlation, provide maximum discrimi- 
nation (e.g., Lubischew, 1962:fig. 1(a)); 
the reverse is also true. A very slight shift 
in the ratio of the two variables will pro- 
vide almost complete discrimination. 
The lower the absolute value of the with- 
in-groups correlation, the poorer is the 
discrimination (Lubischew, 1962:fig. 1(a)). 

The within-group variation is taken as 
the appropriate measure against which to 
judge between-group variation. The dis- 
tance between the groups, or between in- 
dividuals, is judged relative to the vari- 
ances and correlations between the 
variables. 

Phillips, Campbell, and Wilson (1973: 
figs. 5, 6) show group centroids and con- 
centration ellipses for three groups and 
two variables with (a) the same variances 
but differing degrees of correlation with- 
in groups; and (b) differing variances but 
the same degree of correlation between 
the two variables. The degree of overlap 
on the first canonical variate increases as 
the within-groups correlation decreases, 
so that relative between-groups disper- 
sion is less marked. The orientation of 
the canonical vector also changes. As the 
within-groups correlation tends to zero, 
the first canonical vector becomes more 
closely oriented with the abscissa. 

As the within-groups variances change 
in figure 6 of Phillips, Campbell and Wil- 
son (1973), the orientation of the canon- 
ical vectors changes to maintain maximum 
relative between-groups variation. While 
the changes in orientation of the first ca- 
nonical vector are relatively small when 
compared with the changes due to differ- 
ent correlation, the effect on the degree 
of separation of two of the groups is 
marked. For example, with within-groups 
variances of 1.0 and 3.0, there is effec- 
tively complete separation of all three 
groups, or marked separation of group I 
and considerable overlap of groups II 

and III, depending on the ratio of the 
variances. 

The canonical variates provide a sim- 
plified description of the group configu- 
rations. A related statistic, Mahalanobis 
D2, provides a measure of the distance 
between the groups in the total variable 
space. Traditionally, the squared dis- 
tance between any two groups in Figure 
2 would be measured by their Euclidean 
or Pythagorean distance, i.e. by taking 
the difference between the group means 
for each coordinate, squaring the differ- 
ence and summing. However, such a 
measure fails to take account- of the cor- 
relations between the variables. Mahal- 
anobis D2 incorporates the effect of vari- 
able correlations. 

GEOMETRY OF CANONICAL VARIATE 
ANALYSIS AND MAHALANOBIS D2 

Canonical variate analysis can be con- 
sidered as a two-stage rotation procedure. 
The first stage involves description of the 
variation within groups, by orthogonal ro- 
tation of the original variables to new un- 
correlated variables. One of the most 
common ways to achieve the first-stage 
rotation is from a principal component 
analysis. The new uncorrelated principal 
component variables are then scaled by 
the square roots of the corresponding ei- 
genvalues to have unit variance within 
groups, so that the resulting variables are 
orthonormal. The rotation and scaling has 
the effect of transforming the within- 
groups concentration ellipsoid to a sphere. 

Figure 3(a) shows the group means Xk 

and associated concentration ellipses for 
two variables. Figure 3(b) shows the 
same configuration of means, with the in- 
dividual concentration ellipses replaced 
by the concentration ellipse correspond- 
ing to the pooled within-groups SSQPR 
matrix. The first-stage principal compo- 
nent analysis corresponds to finding the 
principal axes of the pooled within- 
groups concentration ellipse. The eigen- 
analysis of the within-groups SSQPR ma- 
trix gives the principal component scores 
Pikm. Figure 3(c) shows the initial config- 
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X2~~~~~~~~~~~~*2 

cvE cv / { CVJ[ 

XI 
FIG. 2.-Representation of the canonical vectors for three groups and two variables. The group means 

(I, II and III) and 95% concentration ellipses are shown. The vectors CVI and CVII are the two canonical 
vectors. In the text, CVI = c. The points Ylm and Y2m represent the canonical variate scores corresponding 
to the first canonical vector for the observations xim and x2,1. 

uration with the principal components P1 
and P2 as the coordinate axes. 

The first-stage analysis involves rota- 
tion and scaling, from concentration el- 
lipsoids to concentration spheres. Since 
the sample variance of the variable Pikm 
is the eigenvalue, dividing the Pikm by the 
square root of the eigenvalue will give a 
new variable Zikm having unit variance. 
Figure 3(d) shows the effect of scaling 
each orthogonal principal component to 
produce orthonormal variables. The scal- 
ing transforms the within-groups concen- 
tration ellipse to a concentration circle. 

The relative positions of the group 
means are now changed. In Figures 3(a) 

to 3(c), the means are associated with el- 
liptical concentration contours, and so 
Mahalanobis D2 is the appropriate dis- 
tance between any pair of groups. In Fig- 
ure 3(d), the concentration contours are 
now circular, indicating that the new 
variables are uncorrelated, with unit vari- 
ance. The usual Euclidean or Pythago- 
rean distance can now be used to deter- 
mine distances. In particular the squared 
Mahalanobis distance between any pair 
of groups is simply the square of the dis- 
tance between the group means in the 
rotated and scaled space depicted in Fig- 
ure 3(d). 

It can be shown that the rotation and 
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scaling is equivalent to expressing the 
axes of the original rectangular coordi- 
nate system as oblique axes. The cosine 
of the angle between any two of the 
oblique axes is equivalent to the partial 
correlation coefficient between the vari- 
ables, and each variable is expressed on 
a -soale on which one unit is equal to one 
standard deviation. 

The rotated and scaled axes, which re- 
flect patterns of within-group variation, 
now become the reference coordinate 
axes for the second stage of the analysis. 
The original group means are considered 
relative to these axes, as in Figure 3(d). 

The second-stage rotation is again ac- 
complished by a principal component 
analysis, this time of the group means Zk 

for the new orthonormal variables. This 
provides an examination of the between- 
groups variation, relative to the patterns 
of within-group variation defined by the 
first-stage principal components. The ei- 
genvalues give the usual sample canoni- 
cal roots f while the eigenvectors give the 
canonical vectors ai for the orthonormal 
variables. - Note that the second-stage principal 
component analysis is carried out with 
the group means for the orthonormal vari- 
ables weighted by the corresponding 
numbers in each group. This use of a 
weighted between-groups SSQPR matrix 
gives the maximum likelihood solution. 
An alternative is to calculate an un- 
weighted between-groups SSQPR ma- 
trix, in which the sample sizes are ig- 
nored. 

The canonical vectors ci for the original 
variables are found by reversing the scal- 

ing and rotation of the first-stage analysis, 
as shown in Figures 3(e) to 3(f). While 
the canonical vectors ai for the orthonor- 
mal variables are orthogonal, the canon- 
ical vectors ci for the original variables 
will not, in general, be orthogonal, as 
shown in Figure 3(f). However, the ca- 
nonical variate scores c1Tx are uncorre- 
lated with the scores cjTx within each 
group, since by the nature of the rotation, 
the canonical vectors are orthogonal with 
respect to the within-groups covariance 
matrix V. 

The data represented in Figure 3(a) 
can first be scaled by the pooled within- 
groups standard deviations to unit stan- 
dard deviation along each coordinate 
axis. The first-stage principal component 
analysis is then based on the correlation 
matrix derived from the pooled within- 
groups SSQPR matrix; this correlation 
matrix will be referred to subsequently 
as the pooled (within-groups) correlation 
matrix. The geometry of canonical variate 
analysis then follows as above, though 
the resulting canonical vectors c, are 
those for standardized variables, and will 
be referred to as the standardized canon- 
ical vectors. The components of the vec- 
tor c, are given by multiplying the com- 
ponents of the vector c by the 
corresponding pooled standard devia- 
tions. 

Consider again the orthonormal vari- 
able space, in which concentration ellip- 
soids are transformed to concentration 
spheres. The first canonical variate for 
the orthonormal variables is the line of 
closest fit to the group means in this 
space. The second canonical variate is 

FIG. 3.-Illustration of the rotation and scaling implicit in the calculation of the canonical vectors. 3(a)- 
group means and associated 95% concentration ellipses for two variables and seven groups. Idealized 
observation xlm is indicated; 3(b)-group means, with concentration ellipses centred at overall mean. 
Principal axes P1 and P2 are indicated; 3(c)-rotation to principal axes P1 and P2 of the common covariance 
matrix. The point Plm gives the principal component scores for the observation xl.; 3(d)-scaling from 
orthogonal variables to orthonornal variables, so that concentration ellipses become concentration circles. 
The point Zlm represents the observation xim in these new coordinates. The axes I and II are the principal 
axes for the group means; 3(e)-the scaling from orthogonal to orthonormal variables is reversed. The 
coordinates P1 and P2 are as in 3(c); 3(f)-the rotation from the original variables te the orthogonal variables 
is reversed. CVI and CVII represent the canonical vectors. 
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orthogonal to the first in this space. Since 
the orthonormal variables reflect patterns 
of within-groups variation, the orthogo- 
nality in the original variable space is 
with respect to the corresponding within- 
groups covariance matrix. 

AN ALGEBRAIC APPROACH 

Canonical variate analysis seeks a lin- 
ear combination Ykm = CTXkm of the orig- 
inal observations xkm such that the ratio 
of the between-groups to the within- 
groups SSQ for a one-way analysis of 
variance of the Ykm is a maximum. 

A one-way analysis of variance of the 
univariate canonical variate scores Ykm in- 
volves the usual within-groups SSQ 

g nk 

E E (Ykm - Yk)2 
k=1 m=1 

and the between-groups SSQ' 

E nk(Yk -T), 
k=1 

nk g 

with Yk n l Ykm, nT = E nk, and YT = 
m=1 k=1 

g 

nT 1 z nkyk. 
k=1 

Since the canonical variate score is giv- 
en algebraically by Ykm = CTXkm, the with- 
in-groups SSQ can be rewritten as 

g nk g nk 

E (Ykm - Yk)2 = E E (CTXkm - CTXk)2 
k=l m=l k=1 m=1 

and this is the same as 
g nk 

y a {C (Xkm - Xk)} . 

k=1 m=1 

The term CT(Xkm - Xk) inside the I.. .} is 
a scalar quantity, and can also be written 
as (Xkm - Xk)TC, so that the within-groups 
SSQ becomes 

g nk 

z CT(Xkm( Xk)(Xkm - Xk)TC. 
k=l m=l 

Since the canonical vector c is the same 
for all observations for all groups, the 
within-groups SSQ may also be written 
as 

fg nk 

CT{ E (Xk- Xk)(Xkm - Xk)TC. 
k=1 m=1 

But the term in .. . } is the familiar form 
of the pooled within-groups SSQPR ma- 
trix, W; it reflects the squared deviations 
and cross deviations of each observation 
from the mean of its corresponding 
group. To see this, note that the entry for 
the ith variable is 

g nk 

E E (Xkim - Xki) 
k=1 m=l 

while that for the ith and jth variables is 
g nk 

E Y. (Xkim - Xki)(Xkjm - xkj); 
k=1 m=1 

these are the within-groups or error terms 
in analysis of covariance. 

Hence the within-groups SSQ can be 
written as cTWc. 

The between-groups SSQ, X nk(Yk - 

YT)2, for the canonical variate scores can 
be written in a similar way to the within- 
groups SSQ. Condensing the steps gives 

E nk(Yk - YT) 
k=1 

-E nk(C jk - CTiT)2 
k=1 

= E nk{CT(i - XT)} 
k=1 
g 

- nkc (Xk 
- XT)(Xk - XT)C 

k=1 

- CT{ nk(ik - XT)(Xk - XT)T}C. 

The term in ...} is the between- 
groups SSQPR matrix; it reflects the 
squared deviations and cross deviations 
of each mean from the mean of the 
means. 

Hence the between-groups SSQ can be 
written as CTBc. 

The canonical vector c is chosen to 
maximize the ratio of the between- to 
within-groups SSQ of the resulting linear 
combination, i.e. to maximize the ratio 
f = CTB/CTWC . The vector c is usually 
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scaled so that the average within-groups 
variance of the canonical variate scores 

is unity. With nw = E (nk - 1), this re- 
k=1 

quirement becomes 
g nk 

nw-' 1 (Ykm - k)2= 1 
k=1 m=1 

In matrix notation, this is equivalent to 
specifying that 

nw-'CTWc= 1, or, 
with V = nw-'W, that CTVc = 1. 

Choosing c to maximize the ratio f 
leads to the fundamental canonical vari- 
ate eigenequation 

(B - fW)c = o (3) 
or 

Bc = Wcf. 

For g groups and v variable>, there are 
h = min(v, g - 1) canonical vectors with 
associated non-zero canonical roots. When 
g - 1 < v, the sample group means lie in 
a h = g - 1 dimensional subspace. The 
canonical vectors provide an alternative 
description of the h-dimensional space. 

Write 

C = (Cl, * Ch) 
and 

F = diag(f1, ..., fh). 

Then the eigenanalysis in (3) becomes 

BC = WCF (4) 

with the scaling 

CTWC = nwI 
and 

CTBC = nwF. 

COMPUTATIONAL ASPECTS 
The geometrical approach given above 

may be expressed algebraically as fol- 
lows. The first-stage principal component 
analysis corresponds to finding the prin- 
cipal axes of the pooled within-groups 
concentration ellipsoid. This is achieved 
algebraically by an eigenanalysis of the 
within-groups SSQPR matrix W. Write W 

in terms of its eigenvectors U and eigen- 
values E, viz. 

W= UEIT, 

with U = (ul, ..., uv) and E = diag(e1, 
... ., ev). 

The principal component scores in Fig- 
ure 3(c) are then given by Pikm = UiTXkm, 

or Pkm = UTXkm. The pooled within- 
groups variance (Pikm - Pik)2 of the scores 
Pikm for the ith principal component is 
simply the corresponding eigenvalue ei. 
To see this, follow the same steps as for 
the derivation of the within-groups SSQ 
in the previous, viz. 

g nk 

_ E (Pikm - Pik) 
k=l m=l 

g nk 

E z {UiT(Xkm Xk)} 
k=1 m=1 

g nk 

= UiT{ (Xkm Xk)(Xkm Xk) Ui 
k=l m=l 

= uiTWUi = ei. 

The transformation from concentration 
ellipsoids to concentration spheres in 
Figure 3(d) is given by Zikm = ei-1'2pikm = 

ei-1/2uiTxkm or Zkm = E 1/2UTXkm. For the 
second-stage analysis, the group means 
for the original variables are expressed 
in terms of these new orthonormal vari- 
ables. The rotated and scaled vector of 
means for the kth group is Zk = E-1/2UTik. 

Let X denote the gxv matrix of group 
means, centered so that the mean of the 
means is zero, with each vector of means 
weighted by the corresponding sample 
size, viz. 

XT = {nIn2(ix- XT), . . ., ng2(Xg - XT)}. 

The between-groups SSQPR matrix is 
then XTX. The matrix of group means for 
the orthonormal variables is ZT= E-1/2 

UTXT. The between-groups matrix for the 
orthonormal variables is then given by 

ZTZ = E-1/2UTXTXUE-1/2 

= E- 12UTBUE-12. (5) 
The second-stage rotation results from 

an eigenanalysis of this between-groups 
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x2 

/< n ) 2m)~~~~~~..2n-X1m,2m 

( < n i~~'1 ln-?,21mj.)' 

X1 

FIG. 4.-Representation of the discriminant function for two groups and two variables, showing the group 
means and associated 95% concentration ellipses. The vector c is the discriminant vector. The points 5- 
and Y2 represent the discriminant means for the two groups. 

The discriminant vector can be constructed by drawing the tangent n to the concentration ellipse at the 
point of intersection with the line d joining the group means; the discriminant vector is orthogonal to the 
tangent n. 

matrix. The second-stage principal com- 
ponent analysis is 

(E-1/2 UTBUE-1/2 -f I) a = o, (6) 

giving the canonical roots fi and canoni- 
cal vectors ai for the orthonormal vari- 
ables. Premultiplication by UE-112 shows 
that the canonical vectors ci for the orig- 
inal variables x are found from the ai by 

Ci = UE-1'2 ai . 

The computational aspects described 
above are those followed in many com- 
puter programs. The advantages of a first- 
stage principal component rotation in 
morphometric studies are illustrated in 
the last section. 

THE TWO-GROUP DISCRIMINANT FUNC- 
TION 

When there are only two groups, a ca- 
nonical variate analysis simplifies to the 
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linear discriminant of Fisher (1936). The 
two-group case is both conceptually and 
computationally simpler than the multi- 
ple-group canonical variate analysis. 

Figure 4 depicts a typical situation for 
two groups and two variables. The basic 
approach follows that outlined in the third 
section. The discriminant vector c defines 
that direction which gives maximum be- 
tween- to within-groups variation of the 
discriminant scores Yim, m 1, ...,n; 
Y2m, m = 1, . . , n2. 

Given the group means and associated 
concentration ellipses, there is a simple 
geometrical construction for the discrim- 
inant vector: (i) join the group means to 
give the vector dx; (ii) construct the tan- 
gent vector n at the point of intersection 
with the concentration ellipse; and (iii) 
construct the discriminant vector c, or- 
thogonal to the vector n. This procedure 
can be simplified further, by determining 
concentration ellipses with increased 
probability levels. The vector joining the 
points of intersection of the overlapping 
ellipses is again the normal vector n. The 
position of this latter vector is such that 
it passes through the mean of the means. 

For two groups, the squared distance 
between the canonical variate or discrim- 
inant means -, and Y2 is the squared Ma- 
halanobis distance. This is defined as 

D2 = dXTV-Wdx, 

where dx - l - x2 is the vector of dif- 
ferences between the group means. 

The discriminant vector c is then given 
by 

c = D-tV-ldx. 
The component D-1 does not usually en- 
ter the definition of the discriminant vec- 
tor. With the definition cu = V-1dx, the 
within-groups variance is then equal to 
D2, while the squared difference be- 
tween the means for the unscaled dis- 
criminant scores is D4. The ratio of 
squared difference between the means to 
the within-groups variance is D2. 

The canonical or discriminant root is 
given by 

f = nw-1nln2nT-lD2 

and the between-groups SSQPR matrix is 

B = nln2nT-'dxdx. 

DETERMINING THE IMPORTANT 
VARIABLES 

Various approaches have been pro- 
posed to determine the variables which 
contribute most to the group separation. 
Probably the most widely used approach 
is that based on the relative magnitudes 
of the canonical variate coefficients for 
the variables standardized to unit stan- 
dard deviation within groups. The stan- 
dardized coefficients are given by multi- 
plying the original coefficients by the 
pooled within-groups standard devia- 
tions. Variables with the larger absolute 
values of the standardized coefficients 
are often taken to be the more important 
ones. 

Variables with small standardized coef- 
ficients can nearly always be eliminated. 
However when some of the variables are 
highly correlated within groups, those 
variables with the larger absolute coeffi- 
cients are not necessarily the more im- 
portant ones. With the presence of highly 
correlated variables, it is important to ex- 
amine the stability of the coefficients. 
When there is little variation between 
the group means for the orthonormal vari- 
ables along a particular within-groups di- 
rection, and the corresponding within- 
groups eigenvalue is also small, marked 
instability can be expected in some of the 
coefficients defining the canonical vari- 
ates. To be more specific, those variables 
with large loadings for the corresponding 
within-groups eigenvector may have un- 
stable coefficients for the canonical vari- 
ates. The degree of instability will de- 
pend on the contribution of the 
corresponding orthonormal variable to 
the discrimination and on the magnitude 
of the within-groups eigenvalue. As a 
practical guideline, when the between- 
groups SSQ for a particular orthonormal 
variable is small (say, less than 5-10% of 
the total between-groups variation), and 
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the corresponding eigenvalue is also 
small (say, less than 1-2% of the sum of 
the eigenvalues), then some instability 
can be expected. 

One approach to the potential problem 
of unstable coefficients is to introduce 
shrunken estimators (Campbell and Rey- 
ment, 1978). In practice, this involves 
adding shrinkage constants to some or all 
of the within-groups eigenvalues. This 
modification is done before these eigen- 
values are used to scale the uncorrelated 
first-stage principal component variables 
to produce the first-stage orthonormal 
variables. 

It is often observed that while some of 
the coefficients of the canonical variates 
of interest change in magnitude and often 
in sign when these shrunken estimator 
procedures are introduced, shrinking the 
contribution of a within-groups eigenvec- 
tor/value combination has littlb effect on 
the corresponding canonical roots. This 
indicates that little or no discriminatory 
information has been lost. When this oc- 
curs, the obvious conclusion is that one 
or some of the variables contributing 
most to the orthonormal variable whose 
effect has been shrunk have little influ- 
ence on the discrimination. The variables 
involved are those that make the greatest 
contribution to the corresponding eigen- 
vector. In general, one or some of these 
variables can then be eliminated. 

A further advantage of this type of pro- 
cedure is that the computational routine 

involved can be used to assess the con- 
tribution of each of the first-stage princi- 
pal components to the discrimination. 
This is useful in morphometric studies, 
since the various eigenvectors can often 
be associated with patterns of growth. 
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