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THE STUDY OF BIOLOGICAL VERSUS STATISTICAL
VARIATION IN MULTIVARIATE MORPHOMETRICS:
THE DESCRIPTIVE USE OF MULTIPLE
REGRESSION ANALYSIS

GENE H. ALBRECHT

Abstract

Albrecht, G. H. (Department of Anatomy, School of Medicine, University of Southern
California, Los Angeles, California 90033) 1979. The study of biological versus statistical
variation in multivariate morphometrics: The descriptive use of multiple regression analysis.
Syst. Zool. 28:338-344.—Multivariate statistical techniques (such as canonical variate and.
principal component analyses) are often used to ordinate or summarize morphometric data
to facilitate biological interpretation of the morphological relationships under study. While
the major axes of statistical variation which are derived in such analyses may have direct
biological significance, there is no a priori reason that the biological and statistical deter-
minants of morphological variation necessarily be concordant. Multiple regression provides
a simple means of identifying and describing the maximum degree of relationship between
(1) a variable, such as size or latitude, which is thought to have some biological relevance to
the problem at hand, and (2) the set of uncorrelated variables, such as canonical or principal
component variates, which represent the major axes of statistical variation and which may be
thought of as a convenient, analytically efficient system of reference axes describing the
multivariate data space. Of particular significance is the ability to examine the full multidi-
mensional space and detect biological information having an angular relationship to the major
axes of statistical variation. [Multiple regression analysis; multivariate analysis; morphomet-

rics; statistical and biological variation.]

Multivariate statistical techniques are
often used to ordinate morphometric data
so that biological parameters underlying
morphological relationships among indi-
viduals or groups may be more readily
discovered. Commonly used techniques
include canonical variate, discriminant
function, principal component, and prin-
cipal coordinate analyses (see Blackith
and Reyment, 1971, for definitions and
examples). All have in common a primary
purpose of summarizing multivariate
data in a relatively few dimensions that
retain the majority of information former-
ly dispersed among the larger array of
original variables. An additional advan-
tage shared by all is the lack of statisti-
cal correlation among the transformed
variates as compared to the complex of
statistical dependencies usually found
among the original variables. Such a re-
duction in both dimensionality and cor-
relation results in a greater probability
that the investigator will be able to make
biologically relevant statements about

the morphometric relationships under
study.

Populations (or individuals) are often
found to be ordered on the first few trans-
formed variates of a multivariate analysis
according to morphological gradients
suggestive of differences in size, shape,
time, function, behavior, or ecology. For
example, Oxnard (1967; nine measure-
ments of the scapula of 27 genera of pri-
mates) interpreted the first canonical
variate as reflecting the extent to which
the shoulder is subjected to compres-
sive or tensile forces, the second canon-
ical variate as reflecting relative degrees
of arboreality or terrestriality, and the
third canonical variate as reflecting the
uniqueness of the human condition.
Johnston and Selander (1971; 16 mea-
surements of the skeleton of 33 popula-
tions of North American house sparrows)
interpreted the first and second principal
component variates, after regression
analyses involving 15 environmental
variables, as reflecting classic examples
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of Bergmann’s and Allen’s ecogeographic
rules, respectively. Jantz (1973; 15 mea-
surements of the skull of five archaeolog-
ical populations of Arikara Indians) inter-
preted the first canonical variate for
males (the second for females) as reflect-
ing directional microevolutionary changes
correlated with the influx of European
trade artifacts. These few examples dem-
onstrate the biological insights that are
capable of being derived from the results
of multivariate analyses.

Not all multivariate results can be in-
terpreted with the same facility as those
just described. For example, Howells
(1973; 70 measurements of the skull of 17
populations of recent humans) interpret-
ed the first canonical variate as a “pri-
mary human discriminator” and the sec-
ond canonical variate as a general
contrast between major geographic areas.
However, he was unable to detect a gen-
eral size gradient lying obliquely in the
plane defined by the first two canonical
variates (Albrecht, in prep., as identified
by the method described herein). Howells
(1973), in apparent prophecy of the pres-
ent work, provided a perceptive account
of the interpretative problems which ac-
company multivariate studies; in partic-
ular, he noted the difficulty of discerning
biological variation which may not coin-
cide with the major axes of statistical vari-
ation.

In assigning biological interpretations
to multivariate results there is no a priori
reason to either (1) treat separately each
axis or variate which describes the trans-
formed multivariate data space, or (2) be-
lieve that the statistical arrangements
achieved in the form of axes or variates
necessarily have a precise or unique bi-
ological reality. Rather, when multivari-
ate methods are used to summarize and
describe—that is, ordinate—morphomet-
ric data, the biological determinants of
morphological variation should be sought
with respect to the relative and absolute
positions of groups or individuals in the
full multivariate data space. This ap-
proach relegates the major axes of statis-
tical variation to the role of convenient

reference axes which may or may not be
of direct biological import; these axes
take value from the analytic efficiency
with which they describe and display
the multivariate data. The results of
Howells (1973; as reinterpreted by Al-
brecht, in prep.) and Albrecht (1978; see
the example below) offer sufficient sup-
port of the premise that biological and sta-
tistical variation are not necessarily con-
cordant.

The present study demonstrates how
multiple regression serves as a simple
exploratory tool that facilitates the inter-
pretation of multivariate morphometric
results in terms of meaningful biological
relationships. Specific application is di-
rected at describing the relationship be-
tween (1) an independently designated
variable thought to have some biological
relevance to the morphometric problem
under consideration (the criterion vari-
able; e.g., size, latitude, humidity, or
prey size), and (2) the major axes of sta-
tistical variation as defined by multivari-
ate statistical procedures applied to the
original set of morphometric data (the
predictor variables; e.g., canonical or
principal component variates). Of partic-
ular significance is the ability to look in
all directions of the full multivariate data
space so that biological information hav-
ing an angular relationship with respect
to the major axes of statistical variation
can be readily detected and easily de-
scribed. The intent is to emphasize the
descriptive, rather than the statistical,
use of multiple regression analysis; the
theoretical and practical aspects of hy-
pothesis testing or other statistical elab-
orations may be obtained from standard

textbooks such as Snedecor and Cochran
(1967).

MULTIPLE REGRESSION ANALYSIS

Multiple regression analysis allows for
the determination of the degree of rela-
tionship between (1) a single criterion
variable Y, and (2) a set of p predictor
variables X;, X,, ..., X, (the formula-
tions of Tatsuoka, 1971, are followed
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here).! This is accomplished by con-
structing a linear combination Y from the
set of predictor variables such that the
difference between the criterion variable
Y and this new “predicted” variable Y are
minimized. The outcome is the constant
a and the set of regression coefficients
b’ =1[by, by, ..., by] such that Y =a +
b, X; + b,X, + ... + b,X;, where the sum
of squared errors e? =3, (Y — Y)? is as
small as possible. Finding the set of
regression coefficients b reduces to com-
puting the matrix product

b= Sxx—lsxy (1)
where S,,7! is the inverse of the p x p
covariance matrix for the predictor vari-
ables and S, is the vector of covariances
between the p predictor variables and
the criterion variable. In practice, the
sums-of-squares-and-cross-products or the
correlation analogs of the above matrices
yield identical solutions except for a scal-
ing factor which affects the “predicted”
variable Y. The constant a is

using the mean values for the criterion
and predictor variables.

The multiple correlation coefficient R,
which represents the correlation be-
tween the criterion variable Y and the
“predicted” variable Y, is

R=3By/r,) (i=1,p) (3)

where 1;; is the correlation coefficient be-
tween the i? predictor variable X and the
criterion variable Y, and B; is the stan-

! Multiple regression is a restricted case of ca-
nonical correlation analysis which finds the highest
degree of relationship between multiple predictor
variables and multiple criterion variables (see
Glahn, 1968; and Tatsuoka, 1971). When canonical
correlation analysis is limited to a single criterion
variable, the canonical correlation is equal to the
square of the multiple regression coefficient. When
canonical correlation analysis is further limited to
uncorrelated predictor variables, the eigenvector
associated with the canonical correlation is equal to
the vector of multiple regression coefficients mul-
tiplied by a scalar (s,/s,); all other calculations lead-
ing to Table 1 remain the same.

dardized partial regression coefficient of
Y on X;. The B;’s are

B; = by(si/sy) (4)

where s; and s, are the standard devia-
tions of X; and Y, respectively. The
squared multiple correlation coefficient
R? is the proportion of variance shared by
the criterion and ‘“predicted” variables.

APPLICATION TO MULTIVARIATE
RESULTS

The above calculations are somewhat
simplified for regression of the criterion
variable on uncorrelated predictor vari-
ables. This situation is attained when
analyzing the relationship between (1)
some variable thought to be important in
explaining the underlying structure of
morphometric data (e.g., size, latitude, or
another morphological character), and (2)
the set of variates which represents the
major axes of statistical variation as de-
rived from the application of some mult-
ivariate statistical procedure (e.g., ca-
nonical variates, principal component
variates, or any other variates whose in-
tercorrelations are all zero).

Assume a multivariate procedure ap-
plied to some original data set yields p
transformed predictor variables X,, X,,

., X,, say canonical variates, which are
uncorrelated and whose variances are s,,
Sg, + -+ » Sp.2 An external criterion variable
Y, say latitude, has variance equal to s,
and covariances with the predictor vari-
ables equal to sy, Ssy, - - ., Spy. Since the
off-diagonal elements (i.e., the covari-
ances among the predictor variables) of
the matrix S,, of equation (1) are zero,
the elements of the vector b of regression
coefficients are

b; = Siy/s{ (i=1,p). (5)

2 These variances are usually the eigenvalues de-
rived from the multivariate analysis of the original
set of variables. In practice it is necessary to define
the exact covariance matrix which is being consid-
ered. In the case of canonical variates, the between-
groups covariance matrix would most likely be of
interest although the pooled within-groups disper-
sion also is characterized by uncorrelated variates.
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The constant a is calculated according to
equation (2). Substituting terms from
equations (4) and (5) into equation (3)
yields the squared multiple correlation
coefficient R? as the sum of the squared
correlation coefficients r;,2

R*=3 (Siyz/\/sizsyz)2 =3’ (i=1,p) (6)

where 1y, is the ratio of variances and co-
variances for the criterion and predictor
variables

I'iy2 = Siy/\/sizsyz. (7)

The squared correlation coefficient r;,? is
the proportion of variance shared by the
criterion variable and the i predictor
variable. The multiple regression coeffi-
cient R follows directly from equation (6).

When the predictor variables are con-
sidered as a descriptive system of axes for
the multidimensional data space, the vec-
tor b whose elements are

Bi = bi/\' 2 bi2 (i = 1, p) (8)

gives the direction cosines for determin-
ing the position of the new axis which
corresponds to the “predicted” variable
Y (i.e., the vector b is normalized such
that b;'b; = 1. Thus, b, is the cosine of
the angle 6; between the “predicted”
variable Y and the major axis of statistical
variation represented by the i" predictor
variable.
The variance s;? of Y is

s)-'z = E'SXXB = 2(Bisiz) (1 = ]-, P) (9)

The calculated value, as compared to the
total variance of the predictor variables
(3 s2,i =1, p), measures the importance
of the “predicted” variable in explaining
the observed morphometric differences.
This is meaningful only if the multiple
correlation coefficient indicates that the
“predicted” variable Y is a reasonable
estimate of the criterion variable Y.
Examination of the above equations re-
veals multiple regression to be based on
simple calculations involving (1) the vari-
ances of the predictor variables, (2) the
variance of the criterion variable, and (3)
the covariances between the criterion
and the predictor variables. Computa-

tions are simplified because the vari-
ances of the predictor variables (often
known as eigenvalues associated with
the major axes of statistical variation) are
available as part of the output of the com-
mon computer programs which perform
multivariate analyses.

A MULTIVARIATE EXAMPLE

Albrecht (1978, table XV), on the basis
of 24 measurements of the craniofacial
skeleton, calculated canonical variate
means for 35 populations of adult-males
belonging to the Old World primate ge-
nus Macaca; for simplicity, only the first
five of the total of 24 canonical variates
are retained here. Albrecht (1978, table
VIII), on the basis of a geometric approx-
imation of skull volume, also calculated
a size variable for the 35 populations of
macaques. The question is whether the
populations of macaques are ordered in
the multidimensional canonical space ac-
cording to a simple gradient of increasing
size.

The five canonical variates are the pre-
dictor variables X,, X,, ..., X5 whose
variances s;? are given in column (1) of
Table 1.2 All covariances among these
five variates are zero since canonical vari-
ates, by definition and construction, are
statistically independent of one another
with respect to the total between-groups
variation. The volumetric size variable is
the criterion variable Y whose variance

3 Care must be taken in calculating variances and
covariances since some multivariate analyses may
be weighted according to sample sizes. For exam-
ple, canonical variate analysis is often based, as it
was here, on a weighted between-groups covari-
ance matrix of the raw data; accordingly, calcula-
tions involving the canonical variates should be
similarly weighted by the sample sizes of the
groups involved. In the present example, the be-
tween-groups variance of the i canonical variate is
(3 Xi2n))/(g — 1), where X;; is the group mean of the
j** group on the i*" canonical variate expressed as a
deviation score from the grand mean, n; is the sam-
ple size of the j* group, and g is the number of
groups. The variance of the size variable and the
covariances between the size variable and the ca-
nonical variates are similarly weighted according to
sample sizes.
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TABLE 1. STATISTICS FOR MULTIPLE REGRESSION OF SIZE (CRITERION VARIABLE Y) ON CANONICAL VARI-
ATES (PREDICTOR VARIABLES X;) FOR MALE MACAQUES., SEE TEXT FOR EXPLANATION OF COLUMN
HEADINGS.
Cenonical R @ . " o
"y 7
®)° W 7 107 Y o 5 £ on
1 18.95 15.11 0.881 0.776 7974 7569 40.8
2 8.26 4.72 0.416 0.173 5714 .5424 57.2
3 3.29 0.15 0.020 0.000 .0456 .0433 87.5
4 2.83 0.68 0.103 0.011 .2403 .2280 76.8
5 1.89 0.56 0.103 0.011 .2963 2812 73.7
sy = 1.552 x 102 a=0.0 R = 0.985 Rz = 0.971 sy? = 13.59 3 52 = 35.22

is 5,2 = 1.552 x 1072, The covariances s;,2
calculated between the size variable and
each of the canonical variates are given
in column (2). The correlation coeffi-
cients r;, between the size variable and
each of the canonical variates, calculated
from the variances and covariances as per
equation (7), are given in column (3); the
squares 1,2 of these correlation coeffi-
cients are given in column (4). The
regression coefficients b;, calculated as
the ratio of column (2) to column (1) as
per equation (5), are given in column (5).
The regression constant, as per equation
(2), is a = 0.0 since all values in this anal-
ysis represent deviation scores from the
grand means of the criterion and predic-
tor variables. The normalized direction
cosines by, as per equation (8), are given
in column (6); the corresponding angles
0, are given in column (7). The squared
multiple regression coefficient, calculat-
ed by summation of column (4) as per
equation (6) is R?2 = 0.971; the multiple
correlation coefficient is R = 0.985. The
variance of the “predicted” size variable
Y, as per equation (9), is s;* = 13.59
which represents 38.6 percent of the total
between-groups variation for the five ca-
nonical variates (2 s;2 = 35.22).

Multiple regression analysis reveals
size to be an important factor in inter-
preting the morphometric relationships
among the 35 populations of macaques.
An optimal linear combination of the five
canonical variates is highly correlated
with size (R = 0.985) and explains a sig-
nificant part (38.6%) of the total between-

groups variation. Of the canonical vari-
ates which define the five-dimensional
data space, the first two are correlated
with size and contribute significantly to
the determination of the size vector. The
last three canonical variates, while they
do account for 22.7 percent of the total be-
tween-groups variation, are minimally
correlated with size and contribute little
to the determination of the size vector;
indeed, the multiple correlation coeffi-
cient is reduced by only 0.022 if the last
three canonical variates are excluded
from consideration. The study of size
variation among the macaques is, there-
fore, reasonably limited to the plane of
the first two canonical variates.

Utilization of only the first two canon-
ical variates requires the direction co-
sines b; be renormalized as per equation
(8) for which now p = 2. The relevant
elements of b become b, = 0.8128 and
b, = 0.5825, and the corresponding an-
gles which relate Y to the first and second
canonical variates are 35.6° and 54.4°, re-
spectively. Using these angles, the “pre-
dicted” size variable Y is plotted in Fig.
1 relative to the distribution of the pop-
ulations of macaques on the first two ca-
nonical variates. The plotted size vari-
able remains highly correlated with the
volumetric size variable (R = 0.974) and
now explains 56.3% of the total between-
groups variation in the plane of these two
canonical variates.

As previously discussed by Albrecht
(1978), the plot of the first two canonical
variates demonstrates a dichotomy in the
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F1G. 1.—Canonical variates one and two for the
analysis of 35 populations of male macaques. Only
group centroids are shown with the Sulawesi ma-
caques indicated by stars. The gradient of increas-
ing size which corresponds to the “predicted” size
variable Y is shown. See Table 1 and Albrecht
(1978, Table XV) for statistics.

nature of variation which characterizes
(1) those macaques endemic to the In-
donesian island of Sulawesi, formerly
known as the Celebes, and (2) all the oth-
er macaques of the genus. The non-Su-
lawesi macaques are ordered parallel to
the size gradient such that size differ-
ences represent the major component of
variation in the craniofacial skeleton. In
contrast, the Sulawesi macaques are or-
dered orthogonal to the size vector along
an axis which may be regarded as repre-
senting size-independent shape infor-
mation. Thus, given that the overall
range of variation in skull morphology is
comparable in magnitude, the non-Sula-
wesi macaques are characterized by rel-
atively small shape differences and large
size differences, and the Sulawesi ma-
caques are characterized by relatively
large shape differences and small size
differences. The significance of these
size-shape contrasts in the skull of the
macaques relates to differing expressions
of ecogeographic and speciation phe-
nomena.

Interpretations of multivariate results
are often limited to the major axes of sta-

tistical variation as determined by the
particular analytic procedure employed.
The present example from the skull mor-
phology of macaques, and that men-
tioned earlier for human crania, demon-
strate that the statistical and biological
determinants of morphological differ-
ences need not necessarily be concor-
dant. With this possibility in mind, the
foregoing formulation of multiple regres-
sion analysis represents one easily ap-
plied, descriptive method by which
biological parameters underlying
morphometric data may be more readily
elucidated and confirmed.
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