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Abstract

Twenty years ago, Rohlf and Marcus proclaimed that a “revolution in morphometrics” was under-
way, where classic analyses based on sets of linear distances were being supplanted by geometric
approaches making use of the coordinates of anatomical landmarks. Since that time the field of
geometric morphometrics has matured into a rich and cohesive discipline for the study of shape
variation and covariation. The development of the field is identified with the Procrustes paradigm,
a methodological approach to shape analysis arising from the intersection of the statistical shape
theory and analytical procedures for obtaining shape variables from landmark data. In this review
we describe the Procrustes paradigm and the current methodological toolkit of geometric morpho-
metrics. We highlight some of the theoretical advances that have occurred over the past ten years
since our prior review (Adams et al., 2004), what types of anatomical structures are amenable to
these approaches, and how they extend the reach of geometric morphometrics to more specialized
applications for addressing particular biological hypotheses. We end with a discussion of some
possible areas that are fertile ground for future development in the field.

Introduction
The study of form may be descriptive merely, or it may become
analytical. We begin by describing the shape of an object in the simple
words of common speech: we end by defining it in the precise language
of mathematics; and the one method tends to follow the other in strict
scientific order and historical continuity.

D’Arcy Wentworth Thompson (1915)

For centuries, naturalists have marvelled at the diversity and com-
plexity of life on earth. From the simple observation that organisms
differ in both their anatomical attributes and in their use of these traits,
scholars have sought to describe morphological and anatomical dif-
ferences among taxa and explain how these differences have evolved
(Darwin, 1859). Indeed, this long-standing fascination with biological
form has shaped our current perspectives on many biological topics,
including our notions of taxonomic discontinuities, our methods of
classification, and our hypotheses of the structure-function relation-
ship. As was accurately prophesized by Thompson in 1915, the study
of form has developed into a rigorous quantitative discipline; the field
of morphometrics. For much of the 20th century morphometric ana-
lyses were accomplished by applying univariate and multivariate stat-
istics to sets of measured traits that included linear distances, ratios, and
angles (i.e., traditional morphometrics sensu: Blackith and Reyment
1971; Marcus 1990; Reyment 1991; for a unique history of the field
see: Reyment 1996). However, over time it became apparent that cer-
tain shortcomings limited the biological interpretations that were pos-
sible with these methods. For example, graphical depictions of shape
and shape changes cannot always be generated from the results of these
approaches, as the geometric relationships among variables were usu-
ally not preserved in the measurements taken (Strauss and Bookstein
1982; for discussion see: Rohlf and Marcus 1993; Adams et al. 2004).
Thus, another approach to the study of shape was required.
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In the 1980’s, alternative approaches were proposed and developed
that represented a radical shift in the way the shapes of anatomical
structures were quantified and analysed (but see Boas 1905; Galton
1907; Sneath 1967 for earlier work). These alternatives captured the
geometry of the morphological structures of interest and retained this
information throughout the analyses. This new approach was called
geometric morphometrics (Corti, 1993). Not surprisingly, the conver-
sion from traditional to geometric morphometrics could be viewed as a
“revolution” (Rohlf andMarcus, 1993). This revolution embodied both
a shift in methodology, and in the conceptual and statistical underpin-
nings of the field. Geometric morphometric approaches generally util-
ize fundamentally different types of data to quantify shape; landmark
coordinates, outline curves, and surfaces. In its early years the field
developed at a rapid pace, as methodological advances for shape quan-
tification intertwined with a rich statistical theory for shape analysis
(the morphometric “synthesis”, sensu Bookstein 1996). As a result of
this paradigm shift, landmark-based geometric morphometrics (GM)
provides a powerful technique in the quantitative biologists’ repertoire
for the study of shape variation and the identification of its causes. Not
surprisingly, these methods are increasingly used to quantify anatom-
ical shapes in a wide range of scientific disciplines.

Nearly a decade ago, we reviewed the field of geometric morphomet-
rics and described the important advantages that these approaches have
relative to alternative methods of shape analysis (Adams et al. 2004;
for other reviews see: O’Higgins 2000; Slice 2005, 2007; Mitteroecker
and Gunz 2009). We also summarized some of the methodological ad-
vances that took place in the ten years following the “revolution”, and
provided an account of the state-of-the field at that time. Much has
happened in geometric morphometrics in the years since that review,
mandating a new appraisal of this nowmature discipline. In this review,
we describe some of the theoretical developments that have ensued dur-
ing the past decade. Our review focuses on advances in landmark-based
morphometric approaches, though we recognize that developments in
related areas have also occurred (e.g., MacLeod 2008; McPeek et al.
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2008; Shen et al. 2009). Our aim is to provide readers with a succinct
summary of the current “toolkit” of geometric morphometrics, and an
appreciation for the types of applications and extensions that can be
used to address specific biological hypotheses. We also provide our
perspective of what the future may hold in store in the coming years.

Geometric morphometrics and the “Procrustes
paradigm”
Geometric morphometrics is the statistical analysis of shape variation
and its covariation with other variables (Bookstein, 1991). These meth-
ods quantify variation in the shape of anatomical objects using the
Cartesian coordinates of anatomical landmarks, after the effects of non-
shape variation have been mathematically held constant. Geometric
morphometric studies are accomplished through what can be called
the Procrustes paradigm; an approach to shape analysis that emerged
from the unification of a rigorous statistical theory for shape (Kend-
all, 1981, 1984, 1985) with analytical procedures for superimposing
landmark configurations to obtain shape variables (Gower, 1975; Book-
stein, 1986; Rohlf and Slice, 1990; Rohlf, 1999b). In a typical morpho-
metric analysis, the Procrustes paradigm is implemented as a series of
operations (Fig. 1).

First, from each specimen, a set of two- or three-dimensional land-
mark coordinates is obtained, which record the relative positions
anatomically-definable locations. These landmarks can be considered
“fixed points”, as they define the locations of particular anatomical
traits representing discrete biological attributes (see below for a dis-
cussion of semilandmarks). Next, a generalized Procrustes analysis
(GPA: Gower 1975; Rohlf and Slice 1990) is used to superimpose the
configurations of landmarks in all specimens to a common coordin-
ate system, and to generate a set of shape variables. This least-squares
procedure translates all specimens to the origin, scales them to unit
centroid size, and rotates them to minimize the total sums-of-squares
deviations of the landmark coordinates from all specimens to the aver-
age configuration. After superimposition, the aligned Procrustes shape
coordinates describe the location of each specimen in a curved space
related to Kendall’s shape space (Rohlf, 1999b; Slice, 2001). These
are typically projected orthogonally into a linear tangent space yield-
ing Kendall’s tangent space coordinates (Dryden and Mardia, 1993,
1998; Rohlf, 1999b; Kent and Mardia, 2001), on which multivariate
analyses of shape variation are then conducted1

The third step of a morphometric study is to test biological hypo-
theses using multivariate statistical methods. For instance, Hotelling’s
T 2 or multivariate analysis of variance (MANOVA) can be used to
test for shape differences among groups, while multivariate regression
or partial least squares (PLS: Rohlf and Corti 2000) can be used to
help identify patterns of covariation between shape and other continu-
ous variables. In addition, methods that partition shape variation in
particular ways can be utilized to address more specialized biological
hypotheses. For instance, shape variation due to directional and fluc-
tuating asymmetry can be quantified and analysed to test hypotheses
of symmetry in a sample (Klingenberg and McIntyre, 1998; Mardia
et al., 2000; Kent and Mardia, 2001; Klingenberg et al., 2002; Schae-
fer et al., 2006). Finally, graphical methods are used to visualize pat-
terns of shape variation and facilitate descriptions of shape changes.
Here, ordinationmethods such as principal components analysis (PCA)
generate scatterplots representing the dispersion of shapes in tangent
space, while thin-plate spline transformation grids can provide a visual
description of the shape differences between objects. The latter dis-
play shape changes and differences in a manner similar to D’Arcy
Thompson’s transformation grids (Thompson, 1917) where one object
is transformed (or “warped”) into another using the thin-plate spline
(Bookstein, 1989, 1991). Importantly, transformation grids may be
generated for actual specimens in the data set or for estimated speci-
mens, such as group means or predicted specimens along a regression

1Note that alternative mathematical approximations of tangent space are possible (see
e.g., Weber and Bookstein 2011). These should give very similar results when shape
variation is small.

line. Thus, by comparing transformation grids, differences in shape
between objects and trends in shape change in specific directions in
Kendall’s tangent space can be depicted and anatomically described.
This combination of rigorous statistical analysis with visualizing shape
changes represents one of the more powerful aspects of the Procrustes
paradigm.

Advances over the past decade
The dawn of the 21st century brought with it the maturation phase
of geometric morphometrics and the emergence of the Procrustes
paradigm as the standard methodological approach for analysing shape
characterized by landmark data. This was due in large part to the realiz-
ation that Procrustes-based approaches outperformed alternative meth-
ods from a statistical perspective (e.g., Rohlf 1999a, 2000, 2003). How-
ever, despite the pre-eminence of this approach to shape analysis, much
theoretical progress continues in the discipline. Particularly active has
been the development of more specialized applications to address par-
ticular biological problems and hypotheses. In this section we highlight
several of these theoretical advances, and some ways in which they en-
hance the morphometrician’s toolkit.

Use of three-dimensional data
One major change in geometric morphometrics from a decade ago has
been the rapid increase in the use of three-dimensional data. Interest-
ingly, there are generally no mathematical limitations for handling data
in three dimensions. Indeed the algorithms commonly used for super-
imposition, projection, and statistical analysis are all generalized to ac-
commodate data of any dimensionality. Instead, the restriction to two-
dimensional data has been decidedly more practical. Until recently,
acquiring three-dimensional data required specialized equipment and
was prohibitively expensive, and the use of many three-dimensional
devices was limited to specimens in a restricted size range. However,
over the past decade a number of lower-cost options have become avail-
able, including surface scanners and other data-collection devices. Be-
cause these devices are nowmore accessible to the research community,
manymore geometric morphometric studies are conducted using three-
dimensional landmark data. This shift is perhaps most pervasive in the
field of anthropology, where the specimen sizes are particularly well-
matched to the optimal size ranges of three-dimensional data acquisi-
tion tools (Slice, 2007).

Semilandmarks and missing landmarks
Geometric morphometric analyses are typically performed on land-
mark coordinates describing specific anatomical locations (i.e., “fixed”

Figure 1 –Graphical depiction outlining the steps of the Procrustes paradigm for landmark-
based geometric morphometrics. 1) Digitize raw data (landmarks recorded on head of a
Plethodon salamander), 2) Generalized Procrustes analysis to remove non-shape variation
(landmarks of 156 specimens before and after GPA), 3) statistical analysis (e.g., MANOVA),
and 4) graphical depiction of results (ordination plot of specimens with thin-plate spline
transformations for the mean specimens of two groups). Data from Adams and Rohlf
(2000).
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anatomical points), yet the shape of other anatomical features may also
be of interest. For example, semilandmarks can be used to capture the
shape of boundary curves, which can then be included with a set of
fixed landmarks in a Procrustes-based shape analysis (Bookstein, 1997;
Bookstein et al., 1999). With this approach, a series of locations along
the curve are digitized, and an additional step may be incorporated in
the Procrustes algorithm which slides these points along vectors tan-
gent to the curve until their positions align as closely as possible with
the semilandmarks on the corresponding curve of a reference speci-
men (for related approaches see: Hammond et al. 2004; McCane and
Kean 2011). This algebra for semilandmarks has now been extended to
three dimensions, so that the shapes of both curves and surfaces can be
quantified (Gunz et al., 2005). Here, semilandmarks on curves are usu-
ally slid along their tangent vectors, and semilandmarks on surfaces are
slid within their tangent planes, until their positions minimize the shape
difference between specimens. This reduces the effect of the arbitrary
initial placement of the semilandmarks, and can be accomplished either
by minimizing bending energy or Procrustes distance between the ref-
erence and the target specimen (Bookstein et al., 1999; Gunz et al.,
2005; Rohlf, 2010). It should be emphasized that care must be taken
when placing semilandmarks relative to other structures (Oxnard and
O’Higgins, 2011). Additionally, these methods tend to work best when
used on relatively smooth curves and surfaces, or whenmany points are
included. Nevertheless, by using both landmarks and semilandmarks,
information from points, curves, and surfaces may be combined for
a more comprehensive quantification and analysis of biological shape
variation (Fig. 2).

Methods have also been developed to account formissing landmarks.
Because morphometric analyses require that all specimens have the
same set of landmarks, incomplete specimens must either be elimin-
ated from the analysis, or missing landmarks must be eliminated from
the dataset. Clearly, neither solution is ideal: a far preferable alternat-
ive is to estimate the locations of missing landmarks in some way, so
that partial specimens can be included. For structures exhibiting bilat-
eral symmetry, one approach is to estimate missing landmark locations
by reflecting their corresponding landmarks across the mid-line of the
structure (Claude, 2008). Unfortunately, this method can only be im-
plemented for symmetrical objects. Inferring the locations of missing
landmarks can also be accomplished through statistical estimation ap-
proaches based on regression or expectationmaximization (e.g., Neeser
et al. 2009; Couette and White 2010). A third alternative extends the
logic of semilandmarks to the estimation of missing landmarks (Book-
stein et al., 1999; Gunz et al., 2009). Here the locations of missing
landmarks are determined using the thin-plate spline, such that they
minimize the shape difference between the incomplete specimen and
the reference, thereby exerting minimal influence on the resulting pat-
terns of shape variation (the method is presently based on bending en-
ergy, but an approach that minimizes Procrustes distances could also be
envisioned). Together, these methods greatly expand the utility of the
Procrustes paradigm for fields where missing landmarks are common,
such as palaeontology and anthropology (see e.g., Weber and Book-
stein 2011).

Analysis of symmetry

Biologists have long been interested in identifying deviations in sym-
metry in populations of organisms, including: fluctuating asymmetry
(the random departures from perfect symmetry across individuals)
and directional asymmetry (biased departures from perfect symmetry
across individuals). Over a decade ago, the methods commonly em-
ployed on traditional measurements to analyse patterns of asymmetry
were generalized for landmark-based shape data (Klingenberg and
McIntyre, 1998; Klingenberg et al., 2002). Subsequently, a mathem-
atical decomposition of shape variation into its symmetry components
(for bilaterally symmetric shapes) was derived (Mardia et al., 2000;
Kent and Mardia, 2001), and recent extensions of the approach have
been proposed for other types of symmetry (Savriama and Klingen-
berg, 2011). As a consequence of these methodological advances, the
analysis of symmetry, and the identification of a lack of symmetry, is

Figure 2 – A) A set of landmarks defining fixed anatomical points, the boundary curve, and
the surface of a scallop shell (from Serb et al. 2011). B) Sliding semilandmarks quantifying
the surface of a skull (reproduced from Adams et al. 2004; after Mitteroecker 2001; MS
thesis, Univ. Vienna).

now frequently examined in geometric morphometric studies.

Visualizing allometry
A nearly ubiquitous property of organisms is that individuals of dif-
ferent sizes also have different shapes. The association of size and
shape is investigated through the analysis of allometry. Allometric
studies have a long history in morphometrics (Huxley, 1932; Jolicoeur,
1963; Cock, 1966; Klingenberg, 1996; Sidlauskas et al., 2011), yet a
recurring challenge has been to generate graphical summaries that ad-
equately illustrate these patterns. This problem is particularly acute for
geometric morphometric data, where allometric trajectories describe
the multivariate relationship between shape and size. Several recent
methods address this issue and help to facilitate biological interpret-
ation of allometric and ontogenetic trends (Fig. 3). For instance, a
principal components analysis of the matrix of tangent space coordin-
ates augmented with the vector of log centroid size reveals the major
direction of variation in this size-shape space (sensu Mitteroecker et
al. 2004), which often is due to allometry. When multiple groups are
present the common allometric component (CAC: Mitteroecker et al.
2004) can be calculated, which is an estimate of the common within-
group trend. Shape residuals from the CAC can then be plotted against
size to identify differences among allometric (or ontogenetic) trajector-
ies. A related approach is to estimate shape scores from the regression
of shape on size, and plot these against size (Drake and Klingenberg,
2008). It should be noted that for a single group, this approach is math-
ematically identical to the CAC, as the average within-group trend (i.e.
the CAC) is simply the trend for a single group. In a third approach,
an allometric trajectory is represented by estimating predicted values
from a regression of shape on size, and a stylized graphic is obtained
by plotting the first principal component of the predicted values versus
size (Adams and Nistri, 2010). Finally, transformation grids represent-
ing the shapes of small and large specimens can be included with the
scatterplots to provide a graphical depiction of how shape changes as a
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function of size. Together, these methods provide complementary visu-
alizations of the allometric and ontogenetic patterns frequently present
in morphometric data.

Quantifying phenotypic trajectories and motion paths

The sequence of changes in shape due to allometry corresponds to a
path (or trajectory) of shape changes in tangent space. This trajectory

Figure 3 – Examples of various visualizations of shape allometry for eight species of Italian
plethodontid salamanders (data from Adams and Nistri 2010). A) The common allometric
component (CAC) versus log centroid size; B) Regression scores versus log centroid size;
C) PC1 of predicted values (from a regression of shape on size) versus log centroid size.

reveals how shape changes as a function of size. However, patterns
of shape change can also be generated from processes other than al-
lometry; thus a general approach for analysing phenotypic change tra-
jectories is required. Recently, one approach was proposed that ex-
amines various attributes of phenotypic change trajectories and uses
these for statistical comparison (Adams and Collyer, 2007; Collyer and
Adams, 2007; Adams and Collyer, 2009; Collyer and Adams, 2013, this
issue). Termed phenotypic trajectory analysis, this approach quanti-
fies the size, orientation, and shape of phenotypic paths (trajectories)
and examines these attributes to determine whether sets of trajector-
ies are similar or different (beyond any differences they may have in
their location in tangent space). Importantly, the method can quantify
any trajectory of shape change; such as those representing allomet-
ric or ontogenetic growth trajectories, temporal sequences, evolution-
ary shape changes, shape changes resulting from ecological shifts, or
shape changes observed in studies of phenotypic plasticity (see Adams
and Collyer 2009). Recent applications have identified parallel evolu-
tion of shape changes resulting from competitive interactions (Adams,
2010), and patterns of ontogenetic convergence among closely related
taxa (Adams and Nistri, 2010; Piras et al., 2010).

A related approach has been proposed for the study of motion paths
(Adams and Cerney 2007; for related ideas see: Slice 1999; O’Higgins
et al. 2002). Here a motion is represented by a sequence of shapes in
tangent space that corresponds to differences in the relative position of
their anatomical parts. This sequence forms a trajectory in shape space
whose attributes can be quantified and used to identify similarities or
differences amongmotion trajectories (Adams and Cerney, 2007). This
method is a special case of the phenotypic trajectory analysis described
above. Finally, a complementary procedure quantifies motion paths as
the change in relative position of a single landmark during a movement,
and sets of these motion paths are then quantitatively compared using
Procrustes analysis (Decker et al., 2007).

Applications to quantitative genetics
Another area where considerable development occurred over the past
decade is the utilization of shape data in quantitative genetics. For in-
stance, a number of studies have used quantitative trait loci to assess
the genetic underpinnings of shape variation (see e.g., Klingenberg
and Leamy 2001; Klingenberg et al. 2004; Burgio et al. 2009; Boell
et al. 2011). In addition, several methods for linking the algebra of
quantitative genetics with that of geometric morphometrics have been
proposed. One method is based on Procrustes distance, allowing the
estimation of heritability and other quantitative genetics attributes in
a univariate framework (Monteiro et al., 2002). An alternative uses
the multivariate generalization of the breeder’s equation (Klingenberg
and Leamy, 2001), retaining the full multivariate nature of the geo-
metric morphometric shape data throughout the analysis and allow-
ing implementations based on the “animal model” (sensu Lynch and
Walsh 1998). Considerable discussion highlighted the advantages and
disadvantages of these two alternatives (e.g., Klingenberg 2003; Mon-
teiro et al. 2003; Klingenberg and Monteiro 2005; see also Myers et al.
2006). Ultimately, for accurate estimates of magnitudes and directions
of shape heritability the multivariate approach is preferred (Klingen-
berg and Monteiro, 2005). Recent applications of this approach can
be found in (e.g., Gómez et al. 2009; Klingenberg et al. 2010; Adams
2011; Martínez-Abadías et al. 2012).

Integration and modularity
It has long been observed that some phenotypic traits are highly cor-
related while other sets of traits display less correlation. Such obser-
vations lead Olson and Miller to propose the concepts of morpholo-
gical integration and modularity (Olson and Miller, 1951, 1958). Mor-
phological integration describes the nature of correlated characters and
the cohesion among traits that result from developmental, evolution-
ary, and functional processes (Klingenberg, 2008; Mitteroecker, 2009).
Several methods have been proposed for empirically identifying mod-
ular or integrated components in morphometric data, and these ap-
proaches address related, but subtly distinct biological hypotheses. For
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instance, an exploratory way to identify integration among traits is
based on conditional independence (Magwene, 2001, 2009). Here no
a priori hypothesis of modularity is required; rather, the partial correl-
ations among traits are used to hypothesize combinations of traits that
may describe modular structure. However, a number of shortcomings
limit the utility of this approach, particularly as the number of traits per
module increases (Mitteroecker and Bookstein, 2007, 2009).

When prior evidence exists to posit a hypothesis of modularity, the
amount of integration between modules can be assessed through partial
least squares (Bookstein et al., 2003). This approach identifies the de-
gree of covariation between sets of traits, and when used with geomet-
ric morphometric data, is called singular warps analysis (Bookstein et
al., 2003; Mitteroecker and Bookstein, 2008). An alternative approach
tests the hypothesis that there is modularity according to a given par-
tition of landmarks against the null hypothesis that there is no modu-
larity. This method expresses the degree of covariation between mod-
ules relative to variation within modules using Escoufier’s RV coef-
ficient (Klingenberg, 2009). This approach can be used to determine
whether an a priori partitioning of landmarks exhibits covariation ex-
pected under the hypothesis of modularity, or to identify putative mod-
ules that have minimal covariation between them. Finally, one can test
alternative modularity hypotheses by comparing the observed pattern
of covariation among traits to patterns of covariation expected under a
particular modular hypothesis (Marquez, 2008; Parsons et al., 2012).
Here a goodness of fit statistic between the two covariance matrices
is obtained and assessed via Monte Carlo methods. Together, these
techniques provide new and exciting avenues for examining patterns of
integration and modularity in morphometric data.

The next ten years: a possible future
The past twenty five years have seen a surge of methodological devel-
opments in geometric morphometrics. What began as an alternative
approach to shape quantification has developed into a rigorous discip-
line that combines a rich statistical theory with shape data from points,
curves and surfaces, to test an ever-increasing breadth of biological hy-
potheses. It is therefore not surprising that geometric morphometric
methods are being utilized more than ever before to describe and in-
vestigate patterns of shape variation and covariation in many areas of
biological research. If history is any guide, the next ten years will be
equally exciting, and theoretical developments in geometric morpho-
metrics will continue at a rapid pace. As we did in our review a decade
ago (Adams et al., 2004), here we highlight a few areas that we predict
are ripe for future development.

Morphometrics and phylogenetics
It is with a sense of irony that we include this topical area under fu-
ture developments, as a decade ago we commented that the intersec-
tion of morphometrics and phylogenetics needs to be further explored
(Adams et al., 2004). In some sense this area may remain a peren-
nial candidate for future development, because despite considerable
effort, combining these two disciplines in a cohesive manner has re-
mained stubbornly elusive. The power of geometric morphometrics
to quantify patterns of shape variation is undeniable; thus it is nat-
ural to consider how morphometric variables may be used to estim-
ate phylogenetic trees. However, most attempts to do so have relied
on methods based on cladistic parsimony, and unfortunately, there is
a fundamental disconnect between these approaches (which require in-
dependent, discrete variables) and geometric morphometric shape vari-
ables (which are continuous, multivariate, and inter-dependent). Dis-
cussions of earlier attempts at bridging this divide can be found in (Fink
and Zelditch 1995; Adams and Rosenberg 1998; Rohlf 1998; MacLeod
2002; Swiderski et al. 2002 see also Adams et al. 2011). In fact, even a
recent approach for estimating phylogenies from shape data (Gonzalez-
Jose et al., 2008) suffers these same shortcomings, as this approach is
ultimately based on a rank-based representation of shape differences
among species along individual shape axes (for discussion see: Adams
et al. 2011; also Klingenberg and Gidaszewski 2010). Other recent
work has focused on obtaining a phylogenetically-informed superim-

position (see e.g., Goloboff and Catalano 2011; Catalano and Goloboff
2012). Importantly, while these methods use morphometric shape
data as input, they fall outside the realm of the Procrustes paradigm,
as the landmark-by-landmark parsimony approaches they employ do
not conform with shape distances as defined by Kendall’s shape space
and tangent space (Klingenberg and Gidaszewski, 2010; Adams et al.,
2011). Finally, several recent approaches use maximum likelihood
methods to obtain estimates of phylogenetic relationship from shape
data (Caumul and Polly, 2005; Cardini and Elton, 2008). However,
current implementations of this approach assume that the characters
evolve independently and with equal variances following a Brownian
motion model of evolution; assumptions that are not met with geomet-
ric morphometric shape data (see Adams et al. 2011). Nevertheless,
because likelihood methods can incorporate continuous multivariate
data, we feel that they hold the most promise for this application, and
recommend that future work in this area be focused in that direction.

Morphometrics and phylogenetics can also be combined by utilizing
an existing phylogeny to address hypotheses of shape change through
evolutionary time. For instance, one can visualize predicted patterns
of shape evolution by estimating ancestral shapes and projecting both
the hypothesized ancestors and the phylogeny into tangent space (e.g.,
Rohlf 2002; Klingenberg and Gidaszewski 2010). Methods have also
been developed for estimating phylogenetic signal from morphometric
data (Klingenberg and Gidaszewski, 2010), though more work is re-
quired in this area. A few studies have looked at the tempo and mode
of macroevolutionary changes in shape (e.g., Monteiro and Nogueira
2011). However, more work is needed to integrate morphometric data,
which is both multivariate and multi-dimensional (sensu Klingenberg
and Gidaszewski 2010), with recent evolutionary methods for compar-
ing models of phenotypic evolution on phylogenies (e.g., Butler et al.
2000; Blomberg et al. 2003; Butler and King 2004), and for estimat-
ing rates of phenotypic evolution on phylogenies (e.g., O’Meara et al.
2006; Revell and Harmon 2008; see also Bookstein 2012b for recent
Brownian motion models for shape evolution).

Estimating landmark covariances
Another area that represents a hold-over from our previous review is
estimating landmark covariance structure. For many reasons, morpho-
logists are interested in evaluating the relative variability within and
among landmarks. However, the superimposition procedure itself al-
ters the resulting patterns of landmark covariance, which makes direct
interpretation of the resulting covariancematrix challenging (Rohlf and
Slice, 1990; Walker, 2000; Rohlf, 2003). While it is important to re-
cognize that this shortcoming does not affect statistical tests of shape
differences performed in Kendall’s tangent space, the issue still needs
to be resolved. One approach to the problem is to perform simula-
tions that can identify the extent to which observed patterns of land-
mark covariance reflect what is expected under a particular model of
shape change. Alternatively, it may be possible to extend recent ap-
proaches that evaluate the relative influence of individual landmarks
on allometric trends (“jackknife-GPA” sensu: van der Linde and Houle
2009), or methods for assessing the relative contribution of each land-
mark to overall patterns of shape variation (Albert et al., 2003), for the
estimation of landmark covariance structure. More work is needed on
this issue.

Morphometrics and biomechanics
One area we believe will be fruitful in generating future methodolo-
gical developments is the intersection of geometric morphometrics and
biomechanics. In biomechanics, finite element analysis (FEA) is often
used to estimate the stresses and strains that anatomical structures en-
dure when subjected to forces or loadings (e.g., Dumont et al. 2005).
Like geometric morphometrics, FEA begins by capturing the geometry
of an anatomical structure based on the coordinates of (many) point loc-
ations. Therefore it is logical to suppose that the two approaches can
be combined in some meaningful way (for discussion see: O’Higgins
et al. 2011; Weber et al. 2011; Parr et al. 2012). Indeed, a number
of approaches for combining FEA and GM in the same analysis have
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recently been proposed. One method uses the thin-plate spline to de-
form an existing FEmodel from one specimen into another (e.g., Pierce
et al. 2008; Stayton 2009; Rivera and Stayton 2011). Here, geomet-
ric morphometric methods estimate the smooth deformation mapping
between specimens (based on the locations of their landmarks), and the
deformation function is subsequently used to generate a predicted FE
model to evaluate stresses and strains for the target specimen. An al-
ternative method combines GM and FEA in a different manner. Here,
the thin-plate spline is used to visualize the structural deformations im-
plied by the FE model itself (e.g., Cox et al. 2011; Groning et al. 2011;
O’Higgins et al. 2011).

While these approaches represent exciting new developments and
hold great promise for future studies in functional and geometric
morphometry, a number of serious challenges remain. First, little has
been done to validate whether the FE models predicted from morpho-
metric mappings represent what would be obtained from an FEA per-
formed directly on the target specimen. Second, when a single FE
model is used to predict models for multiple specimens (e.g., Rivera
and Stayton 2011; Parr et al. 2012), distinct FE models are obtained for
each target specimen. However, all the information about stresses and
strains is based on the geometric and densiometric properties of the ori-
ginal specimen: no new stress information is obtained. As such, this
“filtering” of the FE model through the thin-plate spline does not res-
ult in novel biomechanical predictions for each specimen, but simply
re-expresses the same biomechanical information in some non-linear,
but predictable, manner. Further, at present it is not clear how rep-
resentations of shape differences as displayed by the thin-plate spline
relate to the stresses and strains described by FEA. Additionally, even
when the densiometric properties of both the reference and target spe-
cimens are assumed to be identical (which is unlikely to be the case),
predicted FE models generated from thin-plate spline mappings do not
provide the correct deformations in terms of the physics of the actual
deformations (Bookstein, 2013). Finally, nomathematical theory exists
for quantitatively relating difference in shape to differences in stresses
and strains that would occur on those specimens (seeWeber et al. 2011;
Bookstein 2013). Thus, we currently do not knowwhether the relation-
ship between FE models and shape differences (Procrustes distance) is
a one-to-one or many-to-one mapping. As alluded to above, one prob-
lem is that the thin-plate spline does not take into account the mater-
ial properties of the structure, and thus some biomechanical properties
estimated by the FE model cannot be directly related to shape deform-
ations. Clearly, additional theoretical work is required to resolve these
issues, and to provide a methodological framework for future studies in
this area.

Resolution of modularity approaches

The past several years has seen tremendous growth in studies of in-
tegration and modularity as applied to morphometric data. In fact,
three distinct analytical approaches are currently in use: one based on
partial least squares (Bookstein et al., 2003; Mitteroecker and Book-
stein, 2008), one based on Escoufier’s RV coefficient (Klingenberg,
2009), and one based on comparing observed and expected covariance
matrices (Marquez, 2008; Parsons et al., 2012). Further, two of these
methods (PLS and the RV coefficient) are mathematically related: they
both examine the cross-covariance matrix between sets of traits; only
they use this information in different ways. Despite these advances
however, a number of issues remain to be resolved in this area. One
issue is that the present methods test against an unreasonable null hy-
potheses of modular structure. That is, present methods test all com-
binations of contiguous landmarks to see whether their internal level of
covariation is higher than that to landmarks not in a putative module.
However, these combinations generally ignore the distances between
landmarks, yet landmarks cannot usually be sampled uniformly across
a structure. A simple alternative to the existence of modules is a model
where the level of covariance between landmarks is inversely propor-
tional to their distance. In some datasets, the same modules are ob-
tained by maximizing within-module covariance or by simply cluster-
ing landmarks based on interlandmark distances (F.J. Rohlf, unpub-

lished). Thus, in these instances, there is no need to invoke a hypo-
thesis of modular structure, as the observed covariance patterns are
simply the result of the relative distances between landmarks. Further,
at present it is not clear which approach is most effective at identify-
ing non-spatially determined patterns of integration and modularity,
and under what circumstances. Therefore, what is needed is a thor-
ough comparison of the statistical properties of these approaches under
known conditions, to determine when each performs relatively well and
when each performs more poorly. This would give some much-needed
clarity to the field, and provide end-users with clear recommendations
on which integration andmodularity methods should be utilized, when,
and why. We note that this suggestion echoes the approach taken to re-
solve an earlier issue; namely, which landmark-based morphometric
method should be used. Here, statistical simulations determined that
Procrustes approaches outperformed alternative methods (e.g., Rohlf
1999a, 2000, 2003).

Software development
As with all quantitative fields, new methods will only be used if re-
searchers have access to software for their implementation. Fortu-
nately, the morphometric community is replete with theorists who also
generate software, and thus numerous packages are available. Nearly
all morphometrics packages include the standard components of the
Procrustes paradigm: including Procrustes superimposition, basic stat-
istical analyses of shape data (PCA, MANOVA, regression), and visu-
alization through thin-plate spline transformation grids. A partial
list of these packages includes the TPS-series (e.g., TPSRelw: Rohlf
2010), IMP (Sheets, 2003), the EVAN Toolbox (EVAN Society 2012),
MorphoJ (Klingenberg, 2011), Morpheus et al. (Slice, 1998), and
several libraries for R (e.g., routines in Claude 2008, and the librar-
ies “shapes”: Dryden 2013, and “geomorph”: Adams amd Otárola-
Castillo 2013). More specialized analyses, such as mapping shapes
on phylogenies, asymmetry analyses, and modularity approaches, are
found in fewer software packages, as are methods for incorporating
three-dimensional surface semilandmarks in GPA and for estimating
missing landmarks using deformation procedures. In the future, we
predict that new methodological developments will be incorporated
into the software packages mentioned here, and that new software op-
tions will become available to the end-user.

Conclusions
It is not an overstatement to say that the past twenty five years in
morphometrics has been exciting. We have witnessed a fundamental
shift in how morphology is quantified as the field migrated towards the
use of landmark coordinates on anatomical points, curves, and surfaces.
From the union of statistical shape theory and methods for obtaining
shape variables a standard approach to shape analysis has emerged (the
Procrustes paradigm), and new extensions based on Procrustes meth-
ods continue to be developed to address specific biological hypotheses.
Patterns of shape changes are now quantified and compared, and graph-
ical representations of shapes are generated to facilitate biological in-
terpretation of these statistical trends. From all of these developments
it is clear that D’Arcy Thompson’s dream of investigating biological
form in a fully quantitative manner has now been realized. We look
forward to the exciting new developments that will emerge in the years
to come.
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