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Abstract

This is a general introduction to methods for image
processing and image analysis that are useful in
morphometrics.  Image processing consists of
methods to enhance images, such as contrast
enhancement, filtering, edge detection, etc. so that
the desired details of the images are more evident,
especially when viewed by a human. Image analysis
is concerned with automatically isolating objects in
the image and then obtaining descriptive informa-
tion about the objects. Alternative sets of features
may be mathematically equivalent in their ability to
describe an object, but analyses based on different
features may give different results. Some implica-
tions of this for morphometrics are also discussed.

Introduction

This paper cannot replace a detailed text on image
analysis, but it should to serve as an introduction to
those image processing and image analysis tech-
niques that are useful (or are expected to become
useful) in morphometrics. In addition, it considers
some of the implications of the fact that large num-
bers of new kinds of morphometric characters are
available once images of the organisms have been
captured and manipulated by computers.

Models for the image-forming process itself
are covered first. These are needed in order to
understand some of the kinds of information
present in an image as well as sources of distortion.
The computer hardware involved in the scanning
process is not discussed because it is covered else-
where in this volume (chapters by Fink and by
Macleod). The types of techniques available for
enhancing an image to minimize the effects of
known kinds of distortion are described as well as
methods that transform the image to accentuate its
desirable aspects. These operations, in which new
images are created from old images, correspond to
the field of image processing. The field of image
analysis is concerned with methods for breaking a
scene into its components (at least into object
versus background), extracting useful descriptive
information about the objects in the image, and
interpreting this information (recognition of the
objects and their relationships to one another).

The following texts are especially helpful
general introductions to image processing and
image analysis: Ballard and Brown (1982), Horn
(1986), Pavlidis (1982), and Rosenfeld and Kak
(1982). Journals that publish technical papers in
this field include: Computer Vision; Graphics and
Image Processing; and LE.E.E. Transactions on



38

Pattern Analysis and Machine Intelligence. The
former publishes Rosenfeld's extensive annual
reviews of image processing and image analysis
literature (the bibliographies usually have over
1,000 entries).

Image Geometry and Image Functions

A basic understanding of how an image is formed is
important for an understanding of the methods
used to obtain information about the geometrical
form of the original object being studied. An image
is treated as a two-dimensional pattern of
brightness that is produced by an optical system
such as a camera. An ideal pin-hole camera is the
simplest model of the relationship between points
on the object and points in the image (see Figure
1). Since light travels in straight lines, each point in
the image corresponds to a particular ray of light
projected back toward the scene containing the
object. The direction is defined by the position of
the point on the image and the location of the pin-
hole. As a result of this geometry, the projection
onto the image plane yields a perspective
projection. The optical axis is the perpendicular
vector from the pin-hole to the image plane (the
length of this vector is f'). Consider a point P on the
object. To compute its location, P', on the image
plane, a coordinate system must be established. It
is convenient to use the location of the pin-hole as
the origin with the z-axis aligned with the optical
axis and pointing toward the image (thus points in
front of the camera will have negative z-
coordinates). Let the x-axis extend to the right and
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Figure 1. A model for a pin-hole camera. A point P on the
object is projected onto a point 7 on the image plane.

F. James Rohlf

the y-axis upwards. If the coordinates of P are given

by the column vector P = (x.y,z)‘, then the vector of

coordinates of P' can be found as follows:

P = {*p. (1)
p'z

where z is the unit vector along the optical axis.

The elements of p' are

X
x'= [s

yert i
2 =f

In order for the object scene to illuminate
the image plane, the pin-hole must have a finite
diameter to permit light to enter, but this leads to a
blurring of the image. A solution is to use a lens
rather than a pin-hole. When in focus, a perfect
lens generates an image that obeys the same
projection equations, as given above. The relation-
ship between the focal length, f, of a lens and the
distances to the object and the focal plane are
shown in Figure 2 and in the equation:

-+ 3)

=

where z' is the distance from the lens to the image
plane and -z is the distance from the lens to the
object (as above, z-coordinates are negative in front

of the lens). If a point is actually at a distance Z,
then it will be imaged as a blur circle of diameter

Lens Object

Image plane

Figure 2. A model for the projection of a point onto the
image plane in a camera with a lens. The z-axis is positive
toward the image plane.
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d R (4)

where d is the diameter of the lens and 7' is the z-

coordinate of the point at which Z is imaged in
front or back of the image plane). Thus larger
lenses have a smaller tolerance or depth of field.

The brightness, or image irradiance, at each
point, (xy), in the image can be represented by an
image brightness function, f(xy). Irradiance is
measured in watts per square meter of radiant
energy falling on the image plane. The irradiance
of a small area on the image plane, corresponding
to a small surface patch at position P on the object,
can be computed as

T |d
Ei= I 7
where L is the scene radiance of the object surface
in the direction of the lens, d is the diameter of the
lens (see below), f is the focal length of the lens,
and o the angle between the vector p and the opti-
cal axis (see Figure 3). Therefore image irradiance
is proportional to scene radiance.

2
cost o, (5)
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Figure 3. A model for the brightness of a point on the image
plane as a function of the orientation of a patch on the
surface at the corresponding point on the object.

Scene radiance, L, is power per unit
foreshortened-area emitted into a unit of solid
angle and is measured as watts per square meter
per steradian. It is more complex to model accu-
rately, but there are several important generalities.
The foreshortening effect is proportional to cos 6,
where 6 is the angle between the surface normal
and the vector p toward the lens. Thus, less light is
directed toward the lens if the surface is directed
away from the lens. Unless the surface is matte (an
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ideal Lambertian surface that appears equally
bright from all viewing directions and reflects all
incident light), some light will also be reflected
towards the lens. This will cause the object to
appear glossy or mirror-like (specular).  One
usually wishes to minimize the effects of scene
irradiance so that reflectance, which is a property of
the object itself, can be measured. This can best be
done by making sure that the objects of interest are
evenly illuminated. If this is not possible, one can
try applying various mathematical corrections to the
resultant image. In the models shown above, image
irradiance is a function of the product of a number
of factors. Since most of the methods for image
enhancement involve only linear operations, it is
useful to use log-transformed brightness values as
input for the methods described below.

Color

Color will not be considered in this review except to
note that digitization of an image at more than one
wave length captures more information about a
scene. Color images require additional storage
space and processing power in a computing system
but having multivariate information at each picture
point can enable more powerful techniques to be
used to discriminate among different objects in a
scene.

Blurring

Ideally, a camera's optics map a point in the scene
into a point in the film, but in practice the point of
light is spread out (blurred) as a result of the lens
being slightly out of focus, diffraction rings, film
grain, the camera not being perfectly steady, etc.
The function that describes how a point of light is
spread out is called a point-spread function (it is
not imaged as a distinct small circle as implied by
the equation given above). The spread of bright-
ness values is often approximated by a normal
curve. The effect of a point-spread function at a
given point in the final image can be modeled by
superimposing point-spread functions at each point
in the image (with the height of each point-spread
function being proportional to the brightness of the
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input point). The resulting brightness in the final
image is the sum of the heights of the point-spread
functions at each point. For a 1-dimensional image,
this corresponds to

h(y) = [ f(rx) g(x) dx, (6)

where f corresponds to the point-spread function, g
corresponds to the input function, and h is the
resultant image function. This operation is called
the convolution of the functions f and g and is sym-
bolized as f®g. The function f is called the kernel
of the convolution.

The 2-dimensional generalization is

o oo
h(xy) = J‘ I f(x—u, y—) g(u,v) du dv. (7)
-00-00
It can be shown that the convolution operation is
both associative and commutative, f®@(g®h)
g®f)®h and f®g = g®f. The operation is
well-behaved and easy to work with.

I

Spatial and Frequency Domains

The input function, f(x,y), can be modelled as the
sum of an infinite number of sinusoidal curves.
This allows the input function to be expressed as

fxy) = $ j‘n TF(u,V) el +vy) dy dv, (8)
where
Fuw) = | [ fey) et de y ©

F(u,v) is called the Fourier transform, 7, of f(xy).
While f(xy) is always real, F(xy) is generally
complex.

Certain  operations are more easily
performed on the Fourier transformation of a func-
tion than on the function itself. For example, it can
be shown that the Fourier transform of the convo-
lution of two functions is simply the product of the
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Fourier transforms of each function considered
separately.

J(f®g) = FG, (10)
where /(f) = F and 7(g) = G. Not all functions
have a Fourier transform. Other difficulties are
that the integrals are taken over the entire
xy-plane, whereas imaging devices produce images
for only a finite part of the image plane: also digital
computers must use discrete samples of these
images. For an image with M,N rows and columns,
the discrete version is

M-1  N-1
an = Z fkl g-wifkne/M + (n/N)’ (1 1)
k=0 =0

for 0<m<M-1 and 0<n<N-1. Its inverse trans-

form is
M-1  N-1

fki = E an g8 m/N)! (12)
m=1 n=0

for 0<k<M-1 and 0</<N-1. These expressions
can also be given in terms of sine and cosines
(which is more common in the morphometric litera-
ture), rather than as exponentials of complex
numbers (which is more compact), using the Euler
relation

e = cosu + isinu. (13)

The use of the Fourier transform assumes
that the image is doubly periodic (replicates of the
image repeat in both the x and y directions). Unless
the image at the left edge happens to match that at
the right edge (and the top also matches the bottom
edge), there will be a discontinuity and some
high-frequency components will be introduced.
This problem can be avoided by making sure that
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there is a uniform background all around the object
and that the entire object is within the image.

Digital Images

Of course, the actual images processed by digital
computers must be represented as discrete samples
of the image brightness surface over a finite range.
The image is represented as a 2-dimensional array
of measurements of brightness. This array usually
has about 500 rows and columns (but devices are
available that provide greater resolution). Each
element of the array is an integer, usually recorded
to 8 bits of accuracy, giving the average brightness
of a small region in the image. This element is
called a pel or pixel (short for "picture element").
Thus digital images can be treated as 2-dimensional
tables of numbers. Figure 4 shows an image as an
image surface; the brightness values for selected
rows in the digitized image are plotted as a function
of column position.
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greater than 1/Ax, then components of F will
interact to produce a composite image transform,
F'. Basically, sampling causes information at high
spatial frequencies to interfere with that at low
frequencies (see Figure 5). This phenomenon is
called aliasing, since a wave of frequency w > A
produces the same wave in the sample as a wave
with frequency 2 A-w. Therefore, the image should
not contain frequencies smaller than half the
sampling frequency if this problem is to be avoided
(this lower threshold is called the Nyquist fre-
quency). But some objects are better recognized at
lower resolutions (where the effects of high
frequency noise is averaged out).

One way to reduce the effects of aliasing is
to use a pyramidal image data structure (see
below), where the search for structure begins at low
resolution and then resolution is increased as
needed. Rather than redigitizing at lower resolu-
tions (which would introduce aliasing), the lower-
resolution images are computed as averages from
the original high-resolution image. The consolida-
tion that takes place as one creates lower-resolution
images tends to offset the aliasing that would be
introduced if one were to digitize at larger sampling
intervals. The averaging attenuates the higher
frequencies involved in aliasing. Algorithms have
been developed to perform many types of image
processing operations directly on data stored in a
pyramid.

Figure 4. Digital image of a mouse mandible shown as an
image surface. Brightness values for the selected rows
plotted as a function of column position.

Problems of Sampling

Using a discrete, rather than a continuous, image
introduces an effect called aliasing. It can be shown
(e.g., Horn, 1986) that sampling an image function,
f(x), at intervals of Ax in the image (the spatial
domain) is equivalent to replicating the Fourier
transform of the image function, F(x), at intervals of
1/Ax. If there are frequencies in the original image

0 1 2 3 4 5 6 7
Figure 5. An example of aliasing. When the high frequency
wave is sampled at a lower frequency the observed data
points appear to have been sampled from a lower frequency
wave,

Metrics

As described above, the usual scanning hardware
produces a rectangular array of brightness values.
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This rectangular spatial pattern is convenient for
storage and indexing in digital computers, but it
complicates the interpretation of the topological
relationships among objects in the image. These
considerations are important for the description of
outlines using chain codes. The Jordan curve
theorem states that a simple closed curve should
separate an image into two simply-connected
regions.

But consider the following binary image
where the "0" state corresponds to the background:

0)1]0
11011
0] 110

If we adopt the principle of 4-connectedness (a
point is considered adjacent only to its immediate
neighboring points, left, right, above, and below it)
then the four objects, "1", do not form a closed
curve, yet the background cell in the center is not
connected to the rest of the background. We thus
have two background regions without a closed
curve. On the other hand, if we adopt
8-connectedness (a point is also considered adja-
cent to its diagonal neighbors) then the four object
cells form a closed curve but there is now only one
background region because the center cell is now
connected to the other background cells. One
solution is to use the 4-connectedness principle for
objects but the 8-connectedness rule for back-
ground (or vice versa). Horn (1986) suggests a type
of 6-connectedness. In addition to up, down, left,
and right, he considers cells to be neighborsif they
are diagonally above and to the left or below and to
the right. Of course, he could have arbitrarily
chosen the diagonal directions above and to the
right and below and to the left. If one had a hexag-
onal array, all six cells touching a particular cell
would be considered neighbors. This would be
much simpler, but standard hardware gives only
rectangular arrays.

Data Structures for Digital Images

High-resolution images require considerable
amounts of storage (a standard 480x512 &-bit
image requires 245,760 bytes). That makes it
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important to use efficient methods for the storage
and retrieval of images. The basic approach is to
take advantage of the fact that the brightnesses of
adjacent pixels are not independent of one another
but are usually similar (the phenomenon of spatial
coherence). There are two aspects to efficiency:
compactness of storage and speed of retrieval of
information. Both aspects are important. The
techniques described below emphasize compactness
of storage, since that is usually the limiting factor on
the microcomputers most often used in morpho-
metrics.

Run length encoding This is a simple, and often
very effective, technique for the efficient storage of
images that have only a few levels of brightness
(e.g., binary images). The image is stored as a
continuous stream of bytes but with the start of
each row marked with a special code (or else the
byte offset of the start of each row stored in a sepa-
rate array). The lengths of each of the runs of
identical brightness values along each row are
stored rather than the actual brightness values. For
example, a row of brightness values might be:
[o[1]s]1]1ToToJo o o o 1 o 1]1]o]

The runs would then be (1,4, 6, 1, 1, 2, 1). Note: in
order to recover the brightness values each row
must begin with the same brightness value, say 0. If
a line happens to begin with a brightness value of 1
then an initial run of length 0 is inserted at the
beginning of the row. Some image operations can
be performed on the image in this compressed
format. For example, the area of the object (the 1's
in the image) is simply the sum of the even-
numbered runs. Ballard and Brown (1982, pp.
58-61) show how to compute the horizontal and
vertical projections of an image and its center of
gravity from this storage representation.

Pyramids In some applications it is useful to be
able to process an image at varying degrees of reso-
lution. One method is to partition the digitized
image into non-overlapping regions of equal size
and shape and then to replace each of these regions
by the average pixel density in that region. This
step is called consolidation. This is repeated recur-
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sively until there is only a single region with a
brightness value equal to the average brightness in
the original image. Using the average brightness
value for a region rather than a value from the
center of the region tends to reduce the aliasing
effects that one would expect if one were just to
redigitize the image at a lower resolution. Ballard
and Brown (1982, pp. 109-111) show an example
(from Tanimoto and Pavlidis, 1975) of an algorithm
for edge detection using data stored in a pyramid.

Quad-trees Quad-trees (Samet, 1980) are an effi-
cient method to store binary images. To convert
data stored in a pyramidal data structure to a
quad-tree one recursively searches the pyramid
from top to bottom. If an element is "black" or
"white" then form a terminal node in the quad-tree
of the corresponding type. Otherwise, form an
internal "gray" node with pointers to the results of
the recursive examination of the 4 elements at the
next level in the tree. Samet (1981a) gives an
algorithm to directly convert a raster image (the
usual storage is by rows) to a quad-tree. The
method is efficient in that the image is read and
processed a row at a time and the resulting quad-
tree is of minimal size. Less space is needed by the
algorithm than would be required if the entire
image were read at once. There are many algo-
rithms to perform image processing operations
directly on images stored as quad-trees. The com-
putation of the area of an object is easy. Samet
(1981b) gives an algorithm for computing the
perimeter of regions from a quad-tree representa-
tion, Samet (1983) shows how to perform a medial
axis transformation from a quad-tree. A number of
papers have been published describing the compu-
tation of various geometrical properties of objects
from a quad-tree representation. Pavlidis (1982) is
a convenient source of many of these algorithms.

One problem with quad-trees is that they are
not translation independent—if an object is shifted
in position by one pixel the quad-tree can be very
different in structure. Scott and Iyengar (1986)
developed a translation invariant version of the
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quad-tree based upon the medial axis transforma-
tion (see below).

Filters

A filter is a function which produces new images
that are transformations of an input image. The
purpose is to produce images in which particular
aspects of an image are accentuated or enhanced.
The results can sometimes be quite impressive
(such as revealing details hidden in shadow areas of
a photograph, or the apparent sharpening of an out-
of-focus image). Of course, the desired information
must already be present in the image. What the
enhancements do is transform the information so
that the desired features of the image are more
obvious to a human observer. It is useful to imag-
ine an image as a surface where height represents
the brightness at each point in the image. An
example is shown in Figure 4 above, where each
horizontal curve corresponds to a column in the
digitized image. A transformation of such an image
surface might, for example, smooth out the part of
the surface corresponding to the background but
steepen the sides of the hills corresponding to the
object, so that it appears to have sharp vertical
cliffs.  The published literature on methods of
enhancement is extensive and growing rapidly.
Some standard methods are described below.
These transformations cannot perform "magic." A
great deal of effort can be saved by starting with
simple images of well-illuminated scenes.

Contrast Enhancement

One of the first adjustments to consider is contrast
enhancement. Brightness values are rescaled so
that they cover the full dynamic range of the display
device. For example, in a very low contrast image
the brightness values may range from 150 to 200.
Rescaling them to range from 0 to 255 will result in
an image that humans find easier to interpret. If
the digitizing hardware can perform this operation
as it is acquiring the image, the researcher is able to
make more efficient use of the resolution of the
digitization of the brightness values. This is espe-
cially important if the digitizer cannot furnish at
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least 256 brightness levels. Contrast enhancement
is useful even when working with an already digi-
tized image. However, spreading out a range of
150-200 to 0-255 does not increase the number of
distinct brightness values; they are simply spaced
further apart. The operation is still useful, how-
ever; the image is more pleasant to look at even
though it contains no more information than the
original.

Histogram Transformations

Histogram enhancement techniques include
contrast enhancement, as described above, but also
make a non-linear transformation of the brightness
values so that the brightness values not only cover
the full dynamic range but have a frequency distri-
bution of brightness values that take on a particular
form. In theory, a uniform distribution can be
obtained using the following transformation

M9
8@ =% [ h(p) dp, (14)
0

where M is the number of gray levels, N the number
of pixels, and h(p) the observed histogram of the
number of pixels with each level of brightness p.
The practical problem with this algorithm is that
the input brightness values are discrete, so that the
most we can do is to obtain a more even spacing of
the values. The histogram need not be uniform
since some classes may have many more entries
than others. The results can be rather disappoint-
ing when the important information in the image is
best represented by only a few distinct brightness
values.

Hummel (1977) suggested a transformation
called histogram flattening in which the histogram
is made more uniform by randomly assigning pixels
in the most abundant classes to other brightness
classes. He suggested that the choice of pixels to be
reassigned could be based upon the average
gray-level in their local neighborhoods. On the
other hand, Frei (1977) suggests that, for images to
be interpreted by humans, the goal should be to
produce a picture in which there is a uniform distri-
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bution of perceived brightness levels. To do this,
the distribution of displayed brightness levels
should be hyperbolic rather than uniform. But this
seems to apply only to images of objects that the
viewer expects to see represented by continuous
brightness levels. Simple high-contrast images
(such as bone or shells laid on a sheet of black
paper) are not improved by such transformations.

Adaptive contrast enhancement methods
adjust the degree of contrast enhancement of a
pixel depending upon the distribution of brightness
of its neighboring pixels. Peli and Lim (1982)
proposed a method in which the final image is a
weighted combination of a smoothed image and the
difference between the original image and the
smoothed image. The weights can be a non-linear
function of the brightness in the smoothed image so
as to give greater increase in contrast to certain
ranges of brightness values. An examination of the
gray-level histogram can also be useful when trying
to find a suitable threshold level to segment the
image into regions. If the scene consists of just an
object and background, then one would hope to
find two peaks and the threshold would be placed in
the valley between them. The results are not as
clear-cut as one might expect. One problem is that
pixels on the boundary of an object are expected to
have intermediate gray values dependent upon their
degree of overlap with the object versus the back-
ground. Other problems are shadows, uneven
illumination, and noise.

Smoothing

Smoothing is a useful technique to eliminate
unwanted fine detail in an image by averaging each
pixel's brightness value with those of its neighbors.
Such methods are sometimes referred to as low
pass filters since they remove high-frequency details
(fine undulations in the image surface) while
preserving the low frequency information (large
scale changes in the surface). Often the general
form of an object is of interest rather than its fine
details (texture). A simple analog method of
smoothing is to digitize the image when it is slightly
out-of-focus.  Mathematically, smoothing corre-
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sponds to the convolution of the image function
with a point-spread function; the brightness at each
pixel is spread-out and averaged with adjacent
pixels. This results in a linear, space-invariant (the
same function is used over the entire image),
moving average (each pixel is some type of average
of its neighbors) filter. This can be implemented
using the following equation:

gxy) = h&f

>

u

E h(u-x, v-y) f(uyy (15)

where h is the point-spread function (the kernel of
the convolution), f is the input image function, and
the summations are overall alignments at which the
kernel overlaps the given pixel, at xy.

There are many choices for h depending
upon the type and degree of smoothing desired. A
common choice is the values in the following array.
1/16 | 2/16 | 1/16
2/16 | 4/16 | 2/16
1/16 | 2/16 | 1/16

Usually this filter does not remove much
noise from an image. To produce a stronger effect,
one could either use a larger array of constants or
else apply the filter repeatedly. Such simple local
smoothing applied to the entire image often
removes some important details in the image since
the brightness values along the outline of an object
will also be averaged with those of the background.
This makes the boundaries of an object more diffi-
cult to detect by the human eye. A solution is to
limit the smoothing to regions of relative homoge-
neous brightness levels. Nagao and Matsuyama
(1979) proposed that one examine subregions
around each pixel and then average its brightness
value only with those in the most homogeneous
subregion (an edge-preserving smoothing transfor-
mation). The procedure computes the variance in
regions corresponding to the x's in the 4 possible 90°
rotations of each of the first two patterns (within a

45

5x5 region centered on each pixel) and the one
possible orientation of the third.

X|X|x|. ] XX
X|X|x]. el X]X]|X L X(X]|X
X|-]- LX) X

Nagao and Matsuyama (1979) suggested
using the ordinary variance as a criterion of homo-
geneity. 1 have found slightly better results by
weighting the center point when computing the
mean and variance. One could also include a toler-
ance so that no averaging would take place if even
the most homogeneous region was too heteroge-
neous. The method is time-consuming since nine
variances must be computed at each pixel. If one
knows that the gray-values in a particular region of
an image should be uniform, one can limit the
smoothing operation to that particular area and
thus avoid the smoothing of edges.

Background Subtraction

In some applications it is possible to get rid of some
of the complexity of the image (dirt spots on the
lens, etc.) by subtracting out a constant background.
If the images are correctly aligned, one can simply
subtract the gray-values of the background image
from that of the image under study.

Template Matching and Cross
Correlation

A very common operation is that of matching a
template pattern against an image. On a
I-dimensional image one might slide the template
pattern, t = (-1, 0, 1), across an image, looking for
the position of greatest match (which, in this exam-
ple, is the position of the largest linear increase in
image intensity). The distance between the image
and a template (aligned at pixel y) is

4=\ [ L (@), (16)
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where the summation is over all pixels in the image
for which the template is defined in this alignment.
Finding the location that minimizes dy is equivalent

to finding the location that maximizes the cross
correlation function, Rﬁ, for fand t.

T ) txy) Un

Note the similarity of this function to the convolu-
tion operation [in the convolution t(x-y) is replaced
by t(y-x)]. The same operation can be applied to a
2-dimensional image. The 2-dimensional template
is "rubbed" over the entire image and a value is
computed for each alignment tested. The continu-
ous form of the 2-dimensional cross-correlation
function is

t*f = j J t(u-x,v-y) f(u,v) du dv. (18)
Edge Detection

The regions of rapid change in brightness values in
an image, which often correspond to the boundaries
or edges of objects, seem to convey much of the
information about the shape and locations of
objects in the image. Thus methods that enhance
this aspect of an image are of particular interest.

Gradients The most obvious operation to consider
is the computation of the magnitude of the gradient
of the image surface at each pixel. If the result is
viewed as an image, pixels located in regions of
rapid change in brightness in the original image
would appear as bright points. An object such as a
dark leaf against a light background would thus
appear as a set of bright pixels around the perime-
ter of the leaf. Such a transformed image may be
simpler to process by computer program so as to
obtain particular features of interest (e.g., the
number of pixels brighter than a certain threshold
could be used as an estimate of the perimeter of the
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leaf). However a simple gradient computation may
fail since it is very sensitive to noise in the image.
Thus one may wish to use the gradient of a
smoothed image or to use more complex algorithms
such as those of Machuca and Gilbert (1981).

Horn (1986) shows a simple model for an
edge in an image as a straight line separating two
regions of different brightness.

E(xy) = By + (B,-By) u(xsinf-ycosf + p), (19)

where B1 and B, are the brightness values in the

two regions, x sin 6 - y cos # = p is the equation of
the separating line, and u(z) is the unit step
function:

1 forz>0
1/2forz =0 (20
0 forz<0.

u(z) =

The gradient of this surface is the vector

dE/dx
/3] @

where
dE/ox= sin 6 (B,—B;) 8 (x sin # -y cos 6 + p)

9E/dy =-cos 6 (B,-B,) 6 (x sin 8-y cos 8 + p)- (3

It is important to note that the gradient is
coordinate system independent in that it maintains
its magnitude and orientation relative to the under-
lying edge when the separating line is rotated or
translated.

Laplacian
above is
V2E = 32E/dx? + 32E/dy?

= (B,-B;) 0" (xsinfl-ycosf + p)’

The Laplacian of the surface defined

(23)

where 6' is the unit doublet, the derivative of the
unit impulse &(u). The Laplacian has the desirable
properties of retaining the sign of the brightness
difference across the edge, so we can determine
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which side is brighter and thus reconstruct the
original edge, and it is a linear function of x and y.

Approximations for Digital Images

The simplest approximation is to estimate the
derivatives of the surface at each point in the image
by the differences in Eij at adjacent pixels. Let the

pixels around a point be represented by the follow-
ing table.

E:‘J+1 Ef+|j+1

Ejj Eit1

Note that the order of subscripts corresponds to the
x and then the y dimension, not the usual row and
then column convention with matrix algebra. The
derivatives at the center of this 2x2 array can be
estimated as

1
dE/dx = 3; ((Ei+1j+17Eij+1) + (Ejv1;-Ey))

: , (24)
dE/dy = 3 ((Eiv1j+1-Eiv1)j) + (Ejji1-Ey))
where ¢ is the spacing between the rows and
columns. This formula (from Mero and Vassy,
1975) is the average of two finite-difference approx-
imations and is an unbiased estimate of the slope
for the point where the four pixels used in the
above formula meet. The squared gradient can be
used to produce a map of the location of high rates
of change in brightness in the image. To get the
actual direction of change one must refer back to
the gradient itself. A more refined estimate of the
slope of the surface can be obtained using the
information from a 3 x3 arrays of pixels.

Eij+1| Eij+1 [Eiv1j+1
Ei1j Eij | Bivyy
Eij-1 | Eij1 | Eisgja

The Sobel estimate of the gradient (Shaw,
1979) is computed by cross correlating the above
submatrix of Et.).'s with the weights in the following

two tables (the first yields the change in the
x-direction and the second gives the change in the y-
direction).
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-1 0 1 1 2 1
-2 0 2 0 0 0
-1 0 1 -1 -2 ] -1

From this 3 by 3 array of pixels we can also
estimate the second partial derivatives as

1
BQE/acz = EE(E"_IJ—ZEH =+ El‘+lj)
1 ; (25)
PE/dc = (E;j1—2E; + Ejjiy)

so that the Laplacian can be estimated as

V2E =

4 (1 : v (6
2 [4(5;'-1;' + Ej+ Eiyqj + Ei.r'ﬂ)‘Er}'] e

This function is zero both in areas of constant
brightness and also in areas where brightness varies
linearly. It represents subtracting the value of a
central pixel from the average of its neighbors. This
corresponds to the application of a template with

weights 1/82 times the values in the following table:

0 1 0
1 -4 1
0 1 0

Note that one could just as logically rotate
the coordinate system by 45° before approximating
the derivatives. Linear combinations of this and the
rotated template also produce estimates of the
Laplacian. Horn (1986) states that the following

template, times lj(£2, is popular and produces a
particularly accurate estimate of the Laplacian.

1 4 1
4 | 20] 4
1 4 1

Kirsch Operators

The Kirsch operator (Kirsch, 1971) is a method for
classifying the properties of small regions in an
image. It can be used to detect whether a region
gives evidence for an edge, a line, or is undifferen-
tiated. For example, to determine the direction of a
gradient at each pixel in the image one could
compute
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k+1
S@) =max (1, Y )], 27)
k-1

where the f(x;) are the 8 neighboring pixels to x and
where subscripts are computed modulo 8. The
value of k that yields the maximum indicates the
direction of the gradient (with 3 bits of accuracy).
This method can easily be implemented by match-
ing (cross correlating) the following four templates
with a span of n = 1 (similar templates can be used
for larger values of n). The direction is then indi-
cated by whichever template matches best.

1101 1(11/1 0]1]1 111]0
1101 0]01]0 -1{0]1 1/0]-1
101 -1]-1]-1 -1{-1]10 0]-1]-1

Enhancement of Geometric Patterns

Methods have also been developed that accentuate
particular geometric patterns in an image, rather
than performing more general enhancements.
Special attention has been given to line enhance-
ment methods. This is both because linear features
are often directly of interest (e.g., veins in insect
wings or leaves) and also because linear features
are useful as boundaries of objects. This does not
mean that an object needs to have flat sides—it
need only be relatively smooth. Small regions
around the outline of a bone or a shell, for example,
can be well approximated by a series of linear
edges. Paton (1979) proposed several useful
methods for finding linear features. In these
methods templates are superimposed at various
orientations over each pixel in the image. The
templates are such that the presence of a line in the
region of a pixel will result in a high
cross-correlation. The maximal value obtained for
templates centered on a given pixel is used as the
output value for the given pixel.

Groch (1982) proposed a procedure for
recognizing line-shaped objects in images by trying
to follow a large number of lines starting from seed
poin:s found by searching along transects through
the image. A regional operator is then applied to
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try to fill in gaps along more or less collinear line
segments.

Three-dimensional Images

A detailed discussion of the recovery of 3-
dimensional information from images is beyond the
scope of the present review as it involves more
complex techniques.  Information on the 3-
dimensional orientation of surfaces can be obtained
from their pattern of reflectance (and thus requires
information about their surface properties). For
certain types of objects, one can gain 3-dimensional
information by projecting stripes of light, perhaps
from a laser, across the object at known angles.
The apparent deflection from a straight line in the
image can be related to the shape of the object.

Image Segmentation

It is usually desirable to break an image up into
regions, or segments, corresponding to the logical
subunits of the original scene. In morphometrics,
one wishes to separate the image of an object from
its background and perhaps to isolate different
components of the image. The regions can then be
analyzed separately. In some images the objects to
be located are lines. One can adapt the line
enhancement operators described above. Groch
(1982), for example, used this approach to detect
roads in aerial photographs. Biological images
often contain linear features. Once an object has
been separated from its background,
contour-tracing algorithms can be used to trace its
outline (see below).

Thresholding to Define Regions

While a human can usually easily recognize the
component parts of a complex scene (such as back-
ground, outline of a wing, veins of a wing, cells
between the veins, etc.) this is often a difficult task
to perform automatically (Riseman and Arbib,
1977). With perfect, noise free, images one can
isolate an object from a uniform background simply
by finding a threshold level of brightness such that
all pixels in the background are above or below the
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selected value. Castleman (1979, p. 311) gives a
simple algorithm that can trace out the boundary
between the object and the background for such
images. He points out, however, that even small
amounts of noise can send the tracking algorithm
temporarily or hopelessly off the boundary. This is
a problem with mosquito wings, for example, since
the margin of the wing and the veins are covered
with scales that can become dislodged and appear
in unexpected locations when the wing is mounted
on a slide. An additional problem is the fact that an
image may not be illuminated evenly so that the
background may differ in brightness in different
parts of the image even after some of the standard
image enhancement techniques have been applied.
Thus the boundary tracking problem can become
rather complex and usually must take into account a
priori information about the geometrical properties
of the particular class of objects being extracted, or
else be supervised by someone who knows what the
expected contour should be and thus can intervene
and make corrections when necessary.

Region Growing

A complementary approach is that of "region
growing" (Brice and Fennema, 1970) in which one
first examines small regions in an image and then
merges adjacent regions with similar properties
(brightness, texture). This has been used, for
example, to break aerial photographs into homoge-
neous blocks each representing a different type of
forest, farmland, etc. Grainger (1981) reported an
average accuracy of about 50% when this method
was applied to 186 sample sites from New Forest,
Southern England, for which both ground and
densitometric data were available. This method is
most often used with multispectral images (grey-
scale images at each of several spectral bands).
There is much more information for each pixel, and
hence higher performance can be expected.

Contour Tracing

The most important technique for image segmen-
tation in morphometrics is that of tracing the out-
line of a selected object. If the grey-levels of the
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object are distinct from the background, this is a
relatively straight-forward task. Such images can be
converted into binary images, where "1" corre-
sponds to the selected object and "0" to the back-
ground pixels by thresholding. Pavlidis (1982) gives
algorithms for finding the overall contour and also
for finding the contours of any holes that may be
contained within an object in such a binary image.
In order to describe the algorithms, we need to
adopt the following standard numbering system to
refer to the 8 pixels adjacent to a given point. For
example, the point above the given pixel, Py is

called the 2-neighbor.

3 2 1
4 p;.j 0
5 6 7

A contour is defined as the set of all pixels
within the selected object that have at least one
neighbor that is not part of the object. The strategy
is to start with a point in the object whose
4-neighbor is not in the object, and then to trace the
outline in a counter-clockwise direction.

1. Choose a point, A, in the contour such that its
4-neighbor is not in the object.

Set C = A, S = 6, and set the flag first = true.
While C # A or first = true, do steps 4 to 10.
Set the flag found = false.

While found = false, do steps 6 to 9 at most 3
times (the purpose of this limit is to avoid
looping on objects that consist of only a single
pixel).

6. If B, the (S-1)-neighbor of C, is part of the
object, then set C = B and found = true.

il Else if B, the S-neighbor of C, is part of the
object, then set C = B and found = true.

8.  Else if B, the (S+ 1)-neighbor of C, is part of
the object then set C = B and found = true.

9. ElsesetS =S + 2, modulo 8.
10. Set first = false.
11. End.

TR
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The algorithm must also be applied once for
each hole in the object. When completed, one
needs a description of the path traversed. One
possibility is simply to list the coordinates of the
points C. Another, more compact representation is
to store the coordinates of only the first point and
then store the neighbor code to indicate the direc-
tion taken when moving from one pixel to the next.
When the contour is very smooth, further economy
can be achieved by storing the derivative of the
chain code. The change in direction will usually
require fewer bits than the chain code (unless the
contour often doubles back on itself). When the
chain code sequence or its derivative contains
sequences of identical codes, run-length coding can
be used to reduce the amount of space needed to
store a contour. In run-length coding one replaces
a sequence of identical values with a special code
and the length of the sequence.

Thinning

Thinning algorithms simplify the representation of
the outline of an object by computing an internal
skeleton that will contain useful information about
the original outline.  Straney (this volume)
describes several different methods of defining
what one means by a skeleton and different algo-
rithms for their computation. They are usually
applied to binary images (images that have already
been thresholded). One method is to reduce the
width of elongated objects in the image by "eating
away" at the sides of objects while trying to avoid
the deletion of pixels at the ends of the objects.
There are several methods for carrying out such
operations.  Pavlidis (1982) gives the classical
thinning algorithm. He also presents a simple
approximate thinning algorithm that may be satis-
factory for some purposes. Another approach is to
compute the medial axis transformation, MAT. In
a MAT skeleton, the pixels are located at centers of
circles that touch the original outline at more than
one place. For example, if the original object is a
circle, then the MAT skeleton will be a single point
at the center. If one codes each pixel in the MAT
skeleton by the diameter of the circle that it repre-
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sents, the MAT skeleton has the important property
that it can be used to reproduce the original outline
shape (i.e., the medial axis transform has an
inverse). Blum (1973) describes the geometrical
properties of MAT skeletons and some implications
for shape description in biology. Bookstein et al.
(1985) discuss and give examples of its potential
application to morphometrics including that of
Bookstein (1981). Thin figures seem to be repre-
sented well by MAT skeletons—the skeletons
seems to have intuitively reasonable shapes.
Bookstein et al. (1985) observe that, while it uses
only information on the outline, the skeleton often
has a structure that seems biologically appropriate.
However, the skeleton seems less useful for wider
objects. An important problem is that it is very
sensitive to noise. Small changes in the outline
(e.g., small bumps or indentations) can cause
drastic changes in the form of the skeleton. The
outline has to be quite smooth in order for a simple
skeleton to be obtained.

There also has been some work generalizing
the MAT to gray-level images. Dyer and Rosenfeld
(1979) describe a simple algorithm to thin
gray-scale images. For dark objects, their method
changes each dark pixel to the minimum of its
neighbors' levels provided this does not disconnect
any pair of points in its neighborhood. This process
can be repeated until the objects are sufficiently
“thin". Wang et al. (1981) define a gray-scale
generalization of the medial axis transformation
(which they call a MMMAT, for min-max MAT). It
allows one to reconstruct good approximations to
the original image.

Texture

A general discussion of this topic is beyond the
scope of this review as the complexity and diversity
of types of surface textures possible in biological
images is very large. However, the use of fractal
curves and surfaces has attracted increased interest
in many fields in the last few years. One type of
application that seems useful in morphometrics is
the use of fractal dimension as a description of the
texture or complexity of an outline of an object.
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For example, one can digitize the outline of a leaf
at high resolution and then see how the apparent
length of the outline changes as a function of the
step-size (scale) used to measure the length of the
outline. The fractal dimension of the outline curve
can then be estimated using the relationship

_N_ i
D =1n 17775y (28)

where S is the step size and N is the number of
steps. For a line in Euclidean geometry, a division
of a line into segments of length 1/S results in S
segments and hence a dimension of D = 1. When
the outline is highly reticulate its length will be very
long when one measures it with a small step size
and as a result its fractal dimension will be greater
than 1. Vlcek and Cheung (1986) describe the
computation of the fractal dimension for several
types of leaves. They show that fractal dimension is
a useful descriptor of the irregularity of the leaf
outline. The obtained values range from 1.02 for a
rather smooth American basswood leaf to 1.28 for a
white oak leaf. Long (1985) used fractal dimen-
sionality to describe complex sutures in deer skulls
and in ammonites. He found D-values from about
1.4 to 1.5. Morse et al. (1985) found D-values of
about 1.5 for the outlines of a variety of plants
during early spring. They point out that if insects
and other arthropods living on these plants perceive
the amount of space on the plant (for food and
shelter) in relation to their body size, then small
insects will perceive a much larger available habitat
than larger insects when D > 1. They then show
that the distribution of sizes of insects is in keeping
with what one would expect if their abundance were
proportional to the perceived amount of available
habitat. Katz and George (1985) furnish a program
in BASIC that estimates the fractal dimension of an
outline represented by a set of xy-coordinates.
Slice and Gurevitch (in preparation) used this
approach and found significant differences between
species and trees of the genus Acer (Maples) with
respect to leaf outline complexity. They found that
the ordering of species with respect to mean fractal
dimension was consistent with their subjective
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perception of outline complexity. D. Slice has
developed a program, called FRACTAL-D, that
performs these computations.

A similar idea holds for surfaces. In an
Euclidean plane the subdivision into cells with a
mesh size of 1/S will result in a surface area

composed of N = s equal sized cells, and hence a
dimension of D = 2. As the surface becomes more
complex, the surface area will increase and hence
the fractal dimension will be larger than 2.

Boundary Representation

This is a very important topic. Most applications of
image analysis to morphometrics have been
concerned with the comparison and analysis of
information that can be extracted from an outline
(often supplemented by information on locations of
morphological landmarks). But in order to use an
outline in a quantitative analysis it IS necessary to
use an appropriate mathematical representation.
Listed below are some of the most common
approaches (some have been mentioned above).
These approaches will not be described in detail
since most of them will be covered elsewhere in this
volume,

1. xy-coordinates. One can simply save enough
of the coordinates of enough points around
the outline to capture its form with sufficient
accuracy. Usually one will have more points
in regions of higher curvature. Some methods
of morphometric analysis use these coordi-
nates directly. These raw coordinates can be
used to derive other representations of the
outline. For example, the elliptic Fourier
method uses coordinates as input (rather than
polar coordinates or tangent angles as in most
Fourier studies).

2. Chain codes. The method of using chain
codes (and differential chain codes) was
discussed above.

3.  Polar coordinates. If the outline is a simple
convex shape, then it may be possible to
describe the shape by giving the radius of
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equally spaced vectors from some convenient
origin to points along the outline contour.
This method has been used in many Fourier
applications.

4. Tangent angle. While traversing the outline
of an object, one can record the slope of a
tangent to the outline at the current position
and the distance traveled along the outline.
This has the advantage that one can represent
tangent angle as a function of arc length for
any closed outline shape. This has also been
used in many Fourier studies.

5.  Medial axis skeleton. Since the original out-
line can be recovered from a skeleton, the
skeleton can be used as a method to encode
an outline shape.

6. Splines. Several studies have explored the
usefulness of using splines rather than Fourier
functions to describe the shapes of morpho-
logical structures. Some examples are Engles
(1986) and Evans et al. (1985).

7.  Fractals. Barnsley et al. (1986) show that it is
possible to determine the fractal curve that
provides a close approximation to a given
binary image. Remarkably, this representa-
tion required very few parameters to be esti-
mated in order to fit the outline of complex
objects with very complex outlines such as a
black spleenwort fern frond.

Feature Extraction

Feature extraction is the task of obtaining the most
important descriptive parameters from an image.
These parameters represent not just an encoding of
an image, but the isolation of particular parameters
that can be used to distinguish an object in one
image from another. These may consist of the
usual distance measurements used in morphomet-
rics (lengths, maximum widths, etc.), often the
problem is more complex. Traditional measure-
ments are often selected because they are easy to
make using hand-held calipers. But with automa-
tion other types of measurements may be easier to
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program in a computer. For example, once one has
an outline contour it is easier to measure the area
or the perimeter of an object than it is to measure
its width. Thus with the availability of new technol-
ogy one should not just duplicate conventional
methods but explore other ways of describing
differences among organisms. There are a large
number of ways in which an object in an image can
be described. Unless the different methods are
linearly related, one does not expect them to give
exactly the same results. Thus the choice of types
of descriptors used in a morphometric analysis is
expected to make a difference (see further discus-
sion below). Unfortunately, it is unclear at this
point how one should choose among the different
systems. But in the important special case of
systems of linear distance measurements, Strauss
and Bookstein (1982) point out the advantages of
taking measurements in the form of a "truss" rather
than in the more conventional pattern that often
has a lot of redundancy. One of the most popular
approaches in morphometrics has been the use of
Fourier coefficients to describe outlines of organ-
isms. My comments on this topic is very short since
it is covered elsewhere in this volume. The method
of moment invariants has been used in a few
morphometric studies. It is described in some
detail below since different formulations of the
method have been used and they raise some inter-
esting issues.

Description of an Outline Contour

A common approach is the fitting of some mathe-
matical function to the points sampled around the
outline of an object. The parameters of the fitted
function are then used in multivariate analyses as
descriptors of the shape of the outlines. Various
types of Fourier analysis are the most popular
examples of this approach in morphometrics, but
other functions have also been used. A brief out-
line is furnished below with references to more
detailed accounts.

1. Fourier analysis of an outline expressed in polar
coordinates. In many morphometric studies
points are sampled along the outline such that
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vectors connecting them to some point of
reference (or origin) are separated by equal
angles. The lengths of these vectors
(distances of each point to the origin) are then
subjected to a Fourier decomposition (a
1-dimensional Fourier transformation). The
resulting coefficients can be expressed in one
of two ways: either as the coefficients of the
sin and cosine terms in the Fourier series or in
terms of their amplitude and phase angle.
Kaesler and Waters (1972) provides an early
example. When no landmarks are available it
may not be possible to specify a unique start-
ing point for the measurement of the angles
(i.e., the vector that corresponds to an angle
of 0). In such cases, only the amplitudes for
each harmonic are used as descriptors.
Younker and Ehrlich (1977) provide an
example. A limitation of the use of this polar
representation is that the outline of the object
must be such that each vector crosses the out-
line only once. Thus the outline cannot be
very complex.

Fourier analysis of an outline expressed in terms
of the change in tangent angle as a function of
arc length. Bookstein et al. (1982) refer to this
as an intrinsic representation. Zahn and
Roskies (1972) suggested that an outline be
scaled so that its length is equal to 2 and then
the following function computed for each
point along the outline

¢*(t) = 6(t)-0(0)—, (29)

where ¢ is the distance along the outline of a
given point, 6(¢) is the angle of a tangent line
at that point, and 6(0) is the angle of a tangent
line at the starting point of the outline. Thus
$*(¢) is the difference between the cumulative
change in angle that one observes when
moving along an outline and the change that
one would expect if the outline were a perfect
circle. The values are then subjected to a
Fourier decomposition. This approach has
the advantage that it can be used for any
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closed contour (complete outline), regardless
of its shape.

Elliptic Fourier analysis. Kuhl and Giardina
(1982) proposed the separate Fourier decom-
position of the differences in the x and y-
coordinates as a function of arc length corre-
sponding to the distance along the outline to
each point (again scaled so the perimeter of
the outline is 2x). Rohlf and Archie (1984)
showed that this method has several advan-
tages over the methods listed above.

Splines and other functions. Any function that
can be made to pass through an observed set
of points can be used as a description of an
outline.  Cubic splines and Bezier curves
represent flexible families of curves that can
be made to fit arbitrary configurations of
points. Examples of the use of Bezier curves
are given by Engles (1986) and examples of
cubic splines are given by Evans, et al. (1985).

Eigenshape analysis. Lohmann (1983) showed
that an outline, represented in his case by the
¢*(¢) function, can be fitted by sets of empiri-
cal functions derived from the data. The
advantages of this approach are that fewer
functions are needed to describe the observed
diversity among the objects under study, and it
IS not necessary to specify particular families
of curves to be fit to the outlines (such as
sums of sines and cosines or various types of
polynomial functions). The Chapter 6 by
Lohmann and Schweitzer in this volume is a
general exposition of this method with
examples.

Fractals. As mentioned above, Barnsley et al.
(1986) have shown that it is possible to solve
for the fractal curve that best approximates a
given object outline. In their examples, very
few parameters were needed to obtain a very
close fit for objects with very complex out-
lines. In the case of a black spleenwort fern
frond, the outline was described by a collage
of four affine transformations which required
28 parameters, 8 of which were zero. So few
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parameters were probably required because
the frond does seem to be a case where the
outline shows the property of self-similarity.
Objects with less regularity may require many
more parameters. The relevance of these
functions for morphometrics needs further
study. An important question is the extent to
which objects with similar values of the
parameters (i.e., those that are close together
in the feature space) are similar morphologi-
cally.

In all of these cases, the results are a set of
coefficients that can be used as measurements of
descriptive variables for various types of multivari-
ate analyses. Unfortunately, the results one
obtains from multivariate analyses need not be the
same for different types of shape descriptors. The
descriptors obtained from different methods do not
represent simple linear transformations of the same
information. The relationships between some pairs
of methods correspond to complex non-linear trans-
formations of the original coordinate data. This
implies that it is not sufficient for a method to be
convenient computationally. In order to use a
method one must be confident that it is appropriate
for the description of the kinds of variation that
ones expects to observe.

Moments of an Image Surface

One simple approach to the description of an image
is to transform the image so that the brightness of
the background is zero and the brightness values for
the object are positive numbers. Then the bright-
ness values can be treated as proportional to a 2-
dimensional frequency distribution (a sample from
a 2-dimensional probability density function). The
2-dimensional moments of this function can then be
computed and used as the parameters of this distri-
bution. For example, the mean in the x-direction is

7= [ xf(xy) dx dy. (30)

o0

The p, g central moment can be computed as
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Hpg = (x=X) (y—7)9 f(xy) dx dy. (31)

g — 8
g8

The order of a moment is the sum p +g¢.

A uniqueness theorem (Papoulis, 1965)
guarantees that if f(xy) is piecewise continuous and
has nonzero values in only a finite part of the xy-
plane (true by definition for brightness surfaces),
then moments of all orders exist, the moment
sequence is uniquely determined by f(xy), and the
moments uniquely determine f(xy). Thus the
moments can be considered descriptors of the
image brightness surface and can be used to recon-
struct an image brightness surface. Note that this
method can describe the brightness surface, not just
the outline of an object. However it is often
applied to binary images to limit them to a descrip-
tion of the boundary of an object.

Moment invariants A problem with the use of raw
moments as descriptors is that they are not invari-
ant with respect to rotation, translation, and reflec-
tion of the object within the image. Hu (1962) and
others have formulated functions called moment
invariants which have this desired property. While
useful as descriptors of an image, they have limita-
tions. A practical problem is their sensitivity to
rounding errors in the computation of the higher
moments.

Average moments have been defined in two
ways. Most workers suggest dividing the above
moments by oo the total density of the image (the

volume under the surface). However, Dudani et al.
(1977) suggest that one divide by n, the number of
nonzero pixels in the image. These two methods
are equivalent only for binary images (where f(xy)
= 1 corresponds to a point within the object and 0
otherwise). Yin and Mack (1981, p. 138) say that
the latter method gives weak intensity invariance.
An obvious property of central moments is that
their values are invariant to translation of the object
along the coordinate axes. In most studies the
central moments are normalized in an effort to
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eliminate the effects of overall "size” of the image.
As it is in morphometrics, this is not as simple as it
might seem at first. The most common normaliza-
tion (due to Hu, 1962) is

) (p+q)/2+1
Mpg = Fpg [ Foo :

(32)
for all p, g such that p+q = 2, 3, ... This adjusts the
moments to take into account the overall intensity
of the image (i.e., the volume under the brightness
surface).  Other normalizations are described
below. Because of a misprint in Hu (1962) the divi-
. . . (p+q)/2
sor is often, incorrectly, given as pg, + 1
Maitra (1979, p. 697) gives the correct formula
(which is confirmed by Casasent et al, 1981, p.
127).

The above moments are not useful for most
studies since the coefficients are still affected by
such things as rotation of the image and its degree
of contrast. Several methods have been proposed
for obtaining functions that are invariant to such
details about an image and thus are expected to
describe just its form. Hu (1962) proposed a set of
absolute orthogonal invariants, hy, (based on the

normalized moments, Tpg» above):

hy =30 + 92
hy = (m0=m02)% + 4n1y
hy = (39-3112)% + (3n217103)?
hy = (130+112)%(n21 + 193)?
hs = (130-3112)(130+ 112)[(130+ 112)2-3 (121 +13)°]
+(3121-103) (121 +103)[3(130+ 121) 2121 + 103)?]
hg = (120-102)[(130+ 112)2 (121 + 103)?]
+ 4n11(n30+ n12)(M21+ M03)

(33)

and a skew invariant:

hy = (3n21-103) (130 + 7?12)[(7?304'7.'12)2—3('?21 + ’?03)2]

-(139-3112) (21 + 103) 3 (30 + 112)°~(121 +103)%]

(34)
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In addition to the position and mass invari-
ance of the pm, these functions are invariant to

image rotation. They have been used in many
applied studies. Hall (1979, p. 423) suggested the
use of the logarithms of the h. in order to reduce

their "dynamic range." He does not state, however,
what one should do when the h; <0 (which is often

the case). As pointed out by Maitra (1979), abso-
lute orthogonal invariants are sensitive to dis-
cretization and so are not computationally invari-
ant, especially if one uses outline images. The
example given by Hall (1979, p. 423) shows that
they may vary over several orders of magnitude.

For practical computation, the formulas for
the hj_ can be simplified as follows:

hy =m0 + np2
<

” ¥
h1 = A=~ + 4??]1

hy = B2 + (2

hg = D2 + 132 (33)
hs = BF + CG

hs = A(D>=E2) + 49,,DE

h, = CF-BG,

where

A = magm2

B = n3,=3n2

C = 3na=n03

D =mn3+ 92 (36)
E =m + m3

F = D(D2-3E2)

G = E(SDE~[32).

Dudani et al. (1977) proposed that Hu's
(1962) coefficients should be normalized to correct
for differences in the scale of an image. Since
magnification (isotropic scale change in both x and
y-coordinates) yields an equivalent image, descrip-
tor functions should be insensitive to such a trans-
formation. By dividing Hu's coefficients by various
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powers of hl, the normalizations below achieve this

scale invariance.

2
dy = hy/hy

3
d, = ha/h;

3
d3 = hy/h;

6 (37)
d4 = hS/hl

4
ds = hg/h;

6
dg = hy/hs.

Yin and Mack (1981, p.138) proposed a simi-
lar normalization but raised the moments to various
fractional powers. The resulting moments are then
in a more convenient numerical range.

{ 1 (intensity)
Yi= hy/ngg  (silhouette)

y3 = ‘Ud—z (38)
Ya = {/d—?

ys= | dg |1/
¥ = | ds [1/4
¥i:= I d6 Il‘/()v

where an intensity image is one in which the f(x,y)
are equal to the actual image brightness values. In
a silhouette image, all brightness equal to or larger
than a specified threshold have been set to 1 and all
values less than the threshold set to 0. Since the 4,

and the y; are scale invariant, the normalization of

(p+q)/2+1

the Fog by division by gy, has no effect.

Reddi (1981) proposed slightly different
adjustments to h, to h, which were also intended to

yield scale invariant functions.

F. James Rohlf

2
r, = hy/hy

25
r3 = hs/hy

25
Tg = h4/h]

5 (39)
rs = hs/h;

3.5
re = he/hy

5
[7= h7/h1'

Contrast invariant moments, m,, were pro-

posed by Maitra (1979).

Ik e \/h_z/hl

my = h3pgg/(hzhy)
m3 = hy/h;

4()
my = ‘\/h_S/h-x )
ms = hg/(hghy)

l’]’]ﬁ = h}/hs.

Maitra (1979) does not indicate what should be
done when h5 is negative (one could, arbitrarily, use

=/ bs |).

The problem of the normalization of the
moment invariants is more complex than one might
at first expect since the various adjustments
described above can interact. In a discrete image,
multiplication of the x and y-coordinates by a
constant effects a scale change but no change in the
numbers of rows and columns in an image, and
hence no change in the "mass" of an image. On the
other hand, a magnification of the original image
implies that the digitized image is spread out over
more pixels and thus the digitized image has a
larger mass. Hu's (1962) normalization compen-
sates by, in effect, reducing the image intensities so
that the mass stays the same. But this lowers the
contrast of the image. Radial and angular moment
invariants were proposed by Reddi (1981). He
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expressed h, to h, in terms of angular and radial

moments. While these are mathematically equiva-
lent to the xy-invariants described above, Reddi
(1981) showed how the polar form allows one to
generalize to higher order moment invariants more
easily.

White and Prentice (1987) compared the

effectiveness of moment invariants, chain-code
descriptors, Elliptic  Fourier coefficients, and
conventional  measurements to  discriminate

between a priori defined groups. They found the
chain-code descriptors to perform poorly and both
the moments and the Fourier coefficients 1o
perform well in their tests. However, Rohlf and
Ferson (unpublished) found the method of
moments to perform poorly, due in part to depen-
dencies among some of the coefficients (they are
not statistically independent) and sensitivity to
rounding errors.

Use of moments to determine orientation  Since
the ordinary moments are sensitive to the location
and orientation of an object within an image, this
information can be used to determine an object's
location and orientation so one can move the object
into a standard position for further processing. The
first eigenvector of the variance-covariance matrix
gives the direction of greatest variation. If one is
working with an elongated object (such as a
mosquito wing), then the vector is parallel to its
long axis. Using the notation of Box 15.5 of Sokal
and Rohlf (1981), the slope of this line is

512
b=——, (41)
}\1—5‘1‘
where
1,2 2
A =3(5; +5,+D), (42)
and
35 2
D = 4 [(s3 + 52)2-4(s; 5,-51,). (43)
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In terms of the notation of the previous section, s,

-

R
=y 8y = gy and 85 = gz Knowing the slope

and position, the object can be rotated and trans-
lated into a standard position for subsequent analy-

S¢S,

Reconstruction of Images

This topic is important for several reasons. First, if
one can reconstruct the important features of an
image from a set of measured parameters, that
demonstrates that the parameters used are suffi-
cient to describe the image. Of course, that does
not prove that any of the parameters are directly
interpretable  biologically,  One may have to
perform various transformations on the parameters
in order to put them into a form suitable for analy-
sis and interpretation. The discussion on moment
invariants, above, shows that different assumptions
can suggest different transformations of the initial
set of raw moments of an image surface. Recon-
structed images may also be useful in themselves as
convenient checks on whether the measurements
are mutually consistent.  If one measurement or
more is inaccurate, the reconstructed image should
look distorted. Strauss and Bookstein (1982) point
this out as one of the advantages of the truss
method.

Summary statistics such as means, confi-
dence regions, and principal component axes can be
expressed in terms of the input variables. Fourier
coefficients, for example, can be averaged to give a
description of an average outline. These coeffi-
cients can then be used to construct a plot of the
average outline. Points within a multivariate confi-
dence region correspond to particular combinations
of values of the input parameters. It is possible, for
example, to show a confidence region for a set of
morphometric shapes by constructing examples of
various extreme images that still belong to the
confidence region. Rohlf and Archie (1984) show
examples of reconstructions of hypothetical
mosquito  wings representing extremes possible
along each principal component axis. Thus the
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morphometrician is able to concentrate on the
geometric aspects of the organisms under study
without getting distracted by the large numbers of
measurements, parameters, and various coefficients
involved in the mathematical and statistical analy-
ses being performed.
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