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Abstract
1.	 The use of image data to quantify, study and compare variation in the colours and 
patterns of organisms requires the alignment of images to establish homology, fol-
lowed by colour-based segmentation of images. Here, we describe an R package for 
image alignment and segmentation that has applications to quantify colour patterns 
in a wide range of organisms.

2.	 patternize is an R package that quantifies variation in colour patterns obtained from 
image data. patternize first defines homology between pattern positions across 
specimens either through manually placed homologous landmarks or automated image 
registration. Pattern identification is performed by categorizing the distribution of col-
ours using an RGB threshold, k-means clustering or watershed transformation.

3.	 We demonstrate that patternize can be used for quantification of the colour 
patterns in a variety of organisms by analysing image data for butterflies, guppies, 
spiders and salamanders. Image data can be compared between sets of specimens, 
visualized as heatmaps and analysed using principal component analysis.

4.	 patternize has potential applications for fine scale quantification of colour pat-
tern phenotypes in population comparisons, genetic association studies and inves-
tigating the basis of colour pattern variation across a wide range of organisms.

K E Y W O R D S

colour patterns, heatmap, image registration, image segmentation, landmarks

1  | INTRODUCTION

Natural populations often harbour great phenotypic diversity. Variation 
in colour and pattern are of the more vivid examples of morphological 
variability in nature. Taxa as diverse as spiders (Cotoras et al., 2016; 
De Busschere, Baert, Van Belleghem, Dekoninck, & Hendrickx, 2012), 
insects (Katakura, Saitoh, Nakamura, & Abbas, 1994; Williams, 2007), 
fish (Endler, 1983; Houde, 1987), amphibians and reptiles (Allen, 

Baddeley, Scott-samuel, & Cuthill, 2013; Balogová & Uhrin, 2015; 
Calsbeek, Bonneaud, & Smith, 2008; Rabbani, Zacharczenko, Green, 
Abbani, & Acharczenko, 2015), mammals (Hoekstra, Hirschmann, 
Bundey, Insel, & Crossland, 2006; Nekaris & Jaffe, 2007) and plants 
(Clegg & Durbin, 2000; Mascó, Noy-Meir, & Sérsic, 2004) display nat-
ural variation in pigment or structural colorations. The distribution of 
colours in specific patterns play an important role in mate preference 
(Endler, 1983; Kronforst et al., 2006), thermal regulation (Forsman, 
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Ringblom, Civantos, & Ahnesjö, 2002), aposematism (Rojas, Valkonen, 
& Nokelainen, 2015) and crypsis (Nosil & Crespi, 2006) and represent 
evolutionary adaptations that in many cases have promoted diversifi-
cation within lineages.

Measuring phenotypic variation in organismal colour patterns 
can provide insights into their underlying developmental and genetic 
architecture (Klingenberg, 2010). However, precisely quantifying 
colour pattern variation is challenging. Consistent comparisons of 
colour patterns from images requires the (1) homologous alignment 
and (2) colour-based segmentation of the images. Homologous align-
ment can be performed by transforming one image onto another. 
This transformation can be obtained from manually placed homol-
ogous landmarks or advanced image registration techniques, which 
can be stored and utilized to align colour patterns extracted from the 
images. Image segmentation concerns the categorization of pixels by 
colour. Previously, examples of colour pattern quantification have 
been extensively developed for Heliconius butterflies (Color Pattern 
Modelling [CPM] in Le Poul et al., 2014) and primates (Allen, Higham, 
& Allen, 2015). However, these applications are currently not eas-
ily accessible for use in other organisms. Similarly, advanced solu-
tions are available for biomedical image analysis (Schindelin, Rueden, 
Hiner, & Eliceiri, 2015; Schindelin et al., 2012; Modat, McClelland, 
& Ourselin, 2010), but are not tailored towards quantifying colour 
pattern variation.

Here, we present patternize, an approach to quantification of 
colour pattern variation from 2D images using the R statistical com-
puting environment (R Development Core Team, 2013). The pack-
age provides utilities to extract, transform and superimpose colour 
patterns as well as downstream analysis (Figure 1). The provided R 
functions combine single transformation and colour extraction ap-
proaches. While transformations are obtained from manually placed 
homologous landmarks (patLanRGB(), patLanK() or patLanW()) 
or automated image registration (patRegRGB(), patRegK() or 
patRegW()), colour-based segmentation of the patterns is performed 
using threshold RGB (Red, Blue and Green) values (patLanRGB() 
or patRegRGB()), unsupervised classification of pixels into a set of 
clusters (patLanK() or patRegK()) or watershed transformation 
(patLanW() or patRegW()). By extracting and aligning colour pat-
terns from image data of large numbers of samples, patternize pro-
vides quantitative measures of variation in colour patterns that can 
be used for population comparisons, genetic association studies and 
investigating dominance and epigenetic interactions of colour pattern 
variation in a wide range of organisms. We demonstrate the utility of 
the package with Heliconius butterflies and more challenging examples 
from guppy fish, Galápagos wolf spiders and salamanders.

2  | ALIGNMENT

Superimposing colour patterns to quantify variation in their expres-
sion requires the homologous alignment of the anatomical structures 
they occur in. Image transformations for this alignment can be obtained 
from landmark based transformations or image registration techniques.

2.1 | Landmark based transformations

Landmark based transformations use discrete anatomical points that 
are homologous among individuals in the analysis. Non-rigid, but uni-
form transformations from one set of “source” landmarks to a set of 
“target” landmarks such as affine transformations include translation, 
rotation, scaling and skewing (Hazewinkel, 2001). Additionally, non-
uniform changes in shape between the source and target landmarks 
can be accounted for by storing the transformation as if it were “the 
bending of a thin sheet of metal,” the so-called thin plate spline (TPS) 
transformation (Duchon, 1976). Both the affine and TPS transformation 
can be calculated from sets of landmarks (Figure 2a). We implemented 
these landmark transformations using utilities provided by the R pack-
age Morpho (Schlager, 2016). Landmarks can be transformed using an 
arbitrarily chosen reference sample or an average landmark shape ob-
tained from a set of samples. The average landmark shape is obtained 
by means of Procrustes superimposition of the samples (Goodall, 1991).

2.2 | Image registration

Alternative to landmark based methods, fast and accurate image reg-
istration techniques are available for calculating a transformation from 

F IGURE  1 Overview of main patternize functions and 
functionality. Images can be aligned using homologous landmarks 
(Lan) or automatic registration (Reg), which aligns images using 
common intensity patterns. Colours can be extracted using an RGB 
threshold (RGB), k-means clustering (K) or by identifying watershed 
lines (W). The resulting extracted patterns can be summed and 
visualized as heatmaps or used for principal component analysis and 
calculating the relative area of the colour patterns
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a source to target image based on either intensity patterns or features 
such as points, lines or contours present in the images (Goshtasby, 2005; 
Figure 2a). We use a computation efficient intensity-based image regis-
tration technique implemented in the NiftyReg image registration library 
(Translational Imaging Group (TIG) 2016) and made available in R through 
the RNiftyReg package (Clayden, Modat, Presles, Anthopoulos, & 
Daga, 2017). This methodology calculates the global transformation of 
an image by finding correspondences between sub-volumes of the two 
images (Modat, McClelland, et al., 2010; Modat, Ridgway, et al., 2010). 
Correspondence is assessed using intensity-based similarity measures 
and used to calculate the transformation parameters through a least 
trimmed square (LTS) regression method (Modat, McClelland, et al., 
2010; Modat, Ridgway, et al., 2010). The number of corresponding sub-
volumes to be included or considered as outliers in the calculation of 
the transformation can be varied by the user. The global transform cal-
culated by NiftyReg can be rigid (i.e. including translation, rotation and 
scaling) or affine (i.e. translation, rotation, scaling and skewing).

3  | COLOUR PATTERN EXTRACTION

Studying variation in colour patterns requires the correct identifica-
tion of the colour boundaries. patternize provides functionality to 

categorize the distribution of colours using either an RGB threshold, 
k-means clustering or watershed transformation.

3.1 | RGB threshold

Colour boundaries can be extracted from images or the trait of inter-
est using an RGB threshold (Figures 2, 3). By selecting pixels within a 
specified colour range (specified as RGB value and offset) we provide 
a basic image segmentation approach that works well for extract-
ing distinct colour patterns. Additionally, for distinct colour patterns, 
the RGB value can be iteratively recalculated as the average for the 
extracted colour pixels. This latter approach permits patterns to be 
easily combined when extracted from sets of images that may have 
been taken under different light conditions resulting in differences in 
intensity and contrast.

3.2 | k-Means clustering

We implemented an unsupervised approach for colour-based image 
segmentation using k-means clustering (Figures 4, 5) (Hartigan & 
Wong, 1979). This algorithm assigns pixel RGB values to k clusters by 
iteratively assigning each pixel in the image to the RGB cluster that 
minimizes the distance between the pixel and the cluster centres. 

F IGURE  2 Comparison of image transformation using landmarks or automated registration for quantification of colour pattern variation. 
(a) Illustration of transformation strategies of a source (green) image to a target (grey) image. The thin plate spline (TPS) transformation from 
the source to target landmarks is illustrated by the deformed grid and can be used to transform the image or extracted colour pattern. Image 
registration attempts to find common patterns in images and align the source (green) image to the pixel coordinate system of the target (grey) 
image. Note the extracted colour pattern in red. (b) Example comparison between landmark approach for colour pattern alignment for ten 
butterfly wings of male Heliconius erato hydara. For the landmark approach, we used TPS transformation. For the image registration approach, 
we used affine transformation and 75% of sub-volumes included as inliers

(a)

(b)
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Cluster centres are recalculated each iteration by averaging all pixels 
in the cluster until convergence. We implemented k-means cluster-
ing using the R package stats (R Development Core Team, 2013). 
Clusters are first obtained from a reference image and then used as 
initial cluster centres for the k-means clustering of the subsequently 
analysed images. This allows the program to match clusters that repre-
sent the same colour pattern in different images. For k-means cluster-
ing, the number of clusters must be defined manually. For organisms 
with less distinct pattern boundaries, this is best done by testing dif-
ferent numbers of clusters and choosing a number that best assigns 
pixels to colour patterns.

3.3 | Watershed transformation

The watershed transformation is a powerful tool for image segmen-
tation (Figure 6; Beucher, 1991). The concept of watershed treats 
the image as a topographic map by calculating a gradient map with 
high values in parts of the image where pixel values change abruptly 
(Figure 6b). Subsequently, a flooding process propagates pattern and 
background labels guided by the gradient map. Continuing the flooding 

until pattern and background labels meet, determines the watershed 
lines (ridges in the topography) that are used to segment the image 
(Figure 6c). We implemented the watershed algorithm with utilities 
from the R package imager (Barthelme, 2017) that is based on the 
image processing library CImg (Tschumperle, 2004). In our implemen-
tation, the pattern and background labels are chosen by manually iden-
tifying at least one pattern and one background pixel (at least one for 
each separate pattern and background element). This manual assign-
ment helps the user to overcome potential differences in image light-
ning, glare or overlap between pattern and background RGB values.

4  | OUTPUT

The main patternize functions generate a list of extracted col-
our patterns from each image stored as a raster object (Hijmans, 
2016). These extracted patterns can be summed and visualized as 
heatmaps or used to calculate the relative area of the colour pat-
terns. To better characterize variation in colour patterns among 
samples, we implemented linear principal component analysis (PCA). 

F IGURE  3 Example of image 
registration and threshold colour extraction 
in the forewing band area of Heliconius 
erato erato (n = 10) and hybrid (n = 10) 
butterflies (French Guiana). (a) Example 
of original images with a white line 
indicating the forewing band area. The 
hybrid represents a naturally occurring 
backcross in a hybrid zone with Heliconius 
erato hydara (see Figure 2) that results in 
red colour expression in the forewing band. 
(b) Density plot showing the probability 
to find a sample with a certain percentage 
of coloured area in the wing expressing 
yellow in H. e. erato and red in the hybrid. 
(c) Visualizing the variation in colour 
pattern expression in a heatmap shows a 
consistently larger pattern in the hybrid 
phenotypes (H. e. erato: left, hybrid: middle, 
hybrid minus H. e. erato: right). (d) Principal 
component analysis confirms that the main 
axis of variation (PC1) is related to size 
of the pattern (yellow or red in H. e. erato 
and hybrids, respectively) and separates 
the H. e. erato and hybrid samples. The 
second principal component (PC2) axis 
highlights more complex shape differences 
in the forewing band among the samples 
as demonstrated by the shape changes 
of the colour patterns along the principal 
component axis

(a)

(c)

(d)

(b)
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For an extracted colour pattern, PCA can be performed on the bi-
nary representation of the aligned colour pattern rasters obtained 
from each sample (Figures 3–5). In this matrix, pixel coordinates that 
have the colour of interest in a sample have a value of one, whereas 
pixel coordinates without the colour have the value zero assigned. 
The variance–covariance matrix obtained from the binary matrix 
for a colour is suitable for PCA, which allows visualizing the main 
variations in colour pattern boundaries among or between groups 
of samples, as well as the predicted colour pattern changes along 
the principal component (PC) axis (Johnson & Wichern, 2007). In the 
visualization of the predicted colour pattern changes, positive val-
ues present a higher predicted expression of the pattern, whereas 
negative values present the absence of the pattern. Note that parts 
of the colour patterns that are expressed in all considered samples 
have a predicted value of zero, as these pixels do not contribute 
variance for the PCA analysis.

5  | EXAMPLES

5.1 | RGB threshold pattern extraction in Heliconius 
butterflies

We demonstrate the utility of image alignment and RGB threshold 
extraction in the forewing band area of Heliconius erato populations 

(Figure 2). Heliconius butterflies from the Neotropics display great di-
versity in forewing band shape, which is mainly defined by expression 
of the wntA gene (Martin et al., 2012; Van Belleghem et al., 2017). 
Expression of red pigments in the wing scales is on its turn defined 
by expression of the optix gene (Reed et al., 2011). Comparison of 
the landmark and image registration approach applied to the red 
forewing band variation in Heliconius erato hydara shows that both 
methods perform well (Figure 2b). The TPS transformation used in 
the landmark approach resulted in a better fit to the internal struc-
tures of the wing (i.e. wing veins). The slight offset between the col-
our pattern and vein position in the image registration approach likely 
resulted from a bias in the linear transformation towards aligning the 
outline of the wing and not including non-uniform changes in shape 
within the wing.

Next, we performed automated image registration and RGB 
threshold colour extraction on the same forewing band area of  
H. erato erato. In this region of the wing, H. e. erato lacks optix expression 
and, thus, red scales. However, naturally occurring hybrids between  
H. e. erato and Heliconius erato hydara show optix expression in the 
forewing band area (Figure 3). With this example, we demonstrate 
the ability to compare homologous, but differing coloured pattern 
elements (i.e. yellow vs. red). The PCA analysis and relative area of the 
extracted patterns allow to differentiate the two groups of butterflies 
and indicate overexpression of the colour pattern in hybrids.

F IGURE  4 Example of image registration and k-means clustering of colours in guppies (Poecilia reticulata). (a) Original image of a wild type 
(WT) and golden mutant guppy and their k-means clustered representation (clusters = 7). (b) Heatmaps and difference between WT (n = 10) and 
golden mutant (n = 10) for black and orange colour clusters. (c) Principal component analysis of the pixel matrices obtained for the black (left) 
and orange (right) colour clusters. Images were obtained with permission from Kottler et al. (2013)

(a)

(c)

(b)
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5.2 | Automated registration and k-means clustering 
in guppies and spiders

To assess the general utility of our application across taxa, we ap-
plied the automated registration and k-means clustering approach 
to groups with more complex body shape and colour pattern vari-
ation; guppy fish and Galápagos wolf spiders. Males of the guppy 
(Poecilia reticulata) vary greatly in their ornamental patterns that 
have evolved in response to both natural and sexual selection. 
Several mutants have been described among male guppies that 
affect colour pattern expression. Manually quantifying the differ-
ences in colour pattern expression among these mutations has 
provided valuable insights into the developmental basis and inter-
actions of the involved genes (Kottler, Fadeev, Weigel, & Dreyer, 
2013). Here, we summarized and compared the black and orange 
colour patterns expressed in wild type (WT) vs. golden mutants of P. 
reticulata males using images obtained from Kottler et al., 2013 (im-
ages were used from backcrosses obtained from golden blue mutant 
females with heterozygous males from crossing golden blue with in-
bred wild-derived Cumána populations) (Figure 4). All images were 

aligned to a target image using image registration and colours were 
k-means clustered into seven groups. Before k-means colour clus-
tering, the background was masked using the outline of the guppy 
in the target image. Our analysis of the black and orange colour 
cluster strongly matched the description presented in Kottler et al. 
(2013), demonstrating the absence of a posterior orange spot in 
golden mutants backcrossed into a Cumána population genetic 
background and more diffuse and shifted black ornaments in the 
golden mutants.

Wolf spiders of the genus Hogna inhabit high elevation and coastal 
habitats on the Galápagos islands Santa Cruz and San Cristobal (De 
Busschere et al., 2010). Despite the phylogenetically close relation-
ship of the high elevation and coastal populations within both islands, 
morphometric analysis, including measurements of colour intensity, 
have highlighted striking parallel phenotypic divergence between the 
high elevation and coastal species between the islands (De Busschere 
et al., 2012). Coastal species appear to be paler with a more conspicu-
ous median band on the carapace compared to high elevation species. 
Here, we demonstrate the robustness of automated image registration 
by aligning the highly variable images of the wolf spiders (Figure 5). 

F IGURE  5 Example of image 
registration and k-means clustering of the 
colour pattern of Galápagos wolf spiders 
(Hogna). (a) From left to right: example 
of original image (10 images were used 
for each species), k-means clustered 
image (k = 3) with removed background, 
and alignment of the lightest colour. (b) 
Heatmap corresponding to the lightest 
colour cluster focused on the carapace. 
(c) Map of the Galápagos islands with 
colours indicating the distribution of four 
Hogna species, two high elevation species 
(light and dark green) and two coastal 
species (red and orange). (d) PCA analysis 
of the pixel matrices obtained for the 
lightest colour cluster demonstrates that 
the coastal (Hogna hendrickxi and Hogna 
snodgrassi) and high-elevation (Hogna 
galapagoensis and Hogna junco) species 
cluster phenotypically together and share, 
respectively, the presence and absence of a 
pale median band on their carapace. Images 
were obtained with permission from De 
Busschere et al. (2012)

(a) (b)

(c) (d)
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By focusing on correspondence between the images, the automated 
image registration technique manages to align the spider’s carapace, 
which is morphologically the most consistent part in the images. By 
assigning colours in the spiders to only two clusters, we show a similar 
pattern as described in De Busschere et al. (2012) in which the coastal 
species show a consistently broader and more conspicuous median 
band on the carapace and pale lateral bands compared to the high 
elevation species.

5.3 | Watershed pattern extraction in fire 
salamanders

The glare that is usually present in images of amphibians can make 
it challenging to correctly extract the colour patterns. Additionally, 
some pattern elements may be difficult to identify based on col-
our alone. To overcome these difficulties, we illustrate the wa-
tershed segmentation using images of fire salamanders obtained 
from Balogová and Uhrin (2015) (Figure 6). The fire salamander 
(Salamandra salamandra) is common to Europe and is black with 
yellow, orange or red spots or stripes. The watershed approach 

confidently identifies the orange pattern boundaries in the ana-
lysed images. Combining this colour pattern extraction approach 
with aligning the images allows users to identify regions in the 
salamander’s body where spots or stripes are more consistently 
expressed.

6  | CONCLUDING REMARKS AND 
RECOMMENDATIONS

6.1 | Alignment

patternize provides an unbiased, fast and user-friendly approach 
for colour pattern analysis that is applicable to a wide variety of or-
ganisms. patternize takes jpeg images as input, which can be 
downsampled to decrease computation times. While the landmark 
based approach is computationally slightly faster, automated image 
registration removes the need for labour-intensive landmark setting. 
Moreover, image registration reduces any variation introduced by dif-
ferences in how users manually place image landmarks. However, be-
cause automated registration uses intensity patterns in the images, it 

F IGURE  6 Example of watershed 
transformation for colour pattern 
extraction in fire salamanders (Salamandra 
salamandra). (a) Original image. (b) Image 
gradient transformed to a reference shape 
using landmarks. (c) Transformed image 
with watershed lines highlighted. (d) 
Extracted patterns using the watershed 
lines. (e) Heatmap of orange patterns 
extracted from ten male fire salamanders. 
Areas outside the red box were masked. 
Images were obtained with permission 
from Balogová and Uhrin (2015)

(a)

(d) (e)

(b) (c)



8  |    Methods in Ecology and Evolu
on VAN BELLEGHEM et al.

can be highly sensitive to artefacts in the background and care should 
be taken by standardizing the experimental setup. For cases in which 
the background differs starkly from the studied object, functionality 
is included that allows users to remove the background by provid-
ing RGB cutoff values. The package also allows users to review the 
image registration progress to assess the quality of the automatic 
registration.

6.2 | Colour pattern extraction

Variation in photographic conditions complicates colour pattern extrac-
tion. The option for iteratively recalculating the RGB value and defining 
the start clusters for k-means clustering from a reference image can im-
prove colour pattern extraction under these conditions. However, set-
ting correct RGB or cluster parameters may impact results and should 
be optimized for each analysis. Appropriate RGB and offset values can 
be obtained, for instance, by extracting RGB values from image pix-
els or areas of interest (e.g. use sampleRGB()). Using few or many 
k-means clusters may, respectively, result in grouping colours of inter-
est or assigning multiple clusters to a single pattern of interest. Finally, 
in contrast to RGB threshold colour extraction and k-means clustering, 
watershed transformation takes into account the spatial proximity of 
pixels. Doing so, the interactive identification of pattern vs. background 
in the watershed transformation provides a way to extract colour pat-
terns that is robust to variation in photographic conditions.

6.3 | Output

The output of the main patternize functions are raster objects 
(Hijmans, 2016) that provide for a wide range of downstream analyses. 
As demonstrated by the examples, we provide functions to intersect 
(mask) the extracted patterns with defined outlines, sum or subtract 
the patterns to plot heatmaps, calculate the relative area in which the 
pattern is expressed and carry out principal component analysis (PCA). 
Overall, we hope this R package provides a useful tool for the commu-
nity of researchers working on colour and pattern variation in animals.
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