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A P P L I C A T I O N

patternize: An R package for quantifying colour pattern 
variation
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Frederik Hendrickx6,7 | Chris D. Jiggins1 | W. Owen McMillan8 | Brian A. Counterman3

Abstract
1.	 The	use	of	image	data	to	quantify,	study	and	compare	variation	in	the	colours	and	
patterns	of	organisms	requires	the	alignment	of	images	to	establish	homology,	fol-
lowed	by	colour-based	segmentation	of	images.	Here,	we	describe	an	R	package	for	
image	alignment	and	segmentation	that	has	applications	to	quantify	colour	patterns	
in a wide range of organisms.

2. patternize is an R	package	that	quantifies	variation	in	colour	patterns	obtained	from	
image	 data.	patternize	 first	 defines	 homology	 between	 pattern	 positions	 across	
specimens	either	through	manually	placed	homologous	landmarks	or	automated	image	
registration.	Pattern	identification	is	performed	by	categorizing	the	distribution	of	col-
ours	using	an	RGB	threshold,	k-means	clustering	or	watershed	transformation.

3.	 We	demonstrate	that	patternize	can	be	used	for	quantification	of	 the	colour	
patterns	in	a	variety	of	organisms	by	analysing	image	data	for	butterflies,	guppies,	
spiders	and	salamanders.	Image	data	can	be	compared	between	sets	of	specimens,	
visualized	as	heatmaps	and	analysed	using	principal	component	analysis.

4. patternize	has	potential	applications	for	fine	scale	quantification	of	colour	pat-
tern	phenotypes	in	population	comparisons,	genetic	association	studies	and	inves-
tigating	the	basis	of	colour	pattern	variation	across	a	wide	range	of	organisms.
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1  | INTRODUCTION

Natural	populations	often	harbour	great	phenotypic	diversity.	Variation	
in	colour	and	pattern	are	of	the	more	vivid	examples	of	morphological	
variability	 in	nature.	Taxa	as	diverse	as	spiders	 (Cotoras	et	al.,	2016;	
De	Busschere,	Baert,	Van	Belleghem,	Dekoninck,	&	Hendrickx,	2012),	
insects	(Katakura,	Saitoh,	Nakamura,	&	Abbas,	1994;	Williams,	2007),	
fish	 (Endler,	 1983;	 Houde,	 1987),	 amphibians	 and	 reptiles	 (Allen,	

Baddeley,	 Scott-	samuel,	 &	 Cuthill,	 2013;	 Balogová	 &	 Uhrin,	 2015;	
Calsbeek,	Bonneaud,	&	Smith,	2008;	Rabbani,	Zacharczenko,	Green,	
Abbani,	 &	 Acharczenko,	 2015),	 mammals	 (Hoekstra,	 Hirschmann,	
Bundey,	 Insel,	&	Crossland,	2006;	Nekaris	&	Jaffe,	2007)	and	plants	
(Clegg	&	Durbin,	2000;	Mascó,	Noy-	Meir,	&	Sérsic,	2004)	display	nat-
ural	variation	in	pigment	or	structural	colorations.	The	distribution	of	
colours	in	specific	patterns	play	an	important	role	in	mate	preference	
(Endler,	 1983;	 Kronforst	 et	al.,	 2006),	 thermal	 regulation	 (Forsman,	
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Ringblom,	Civantos,	&	Ahnesjö,	2002),	aposematism	(Rojas,	Valkonen,	
&	Nokelainen,	2015)	and	crypsis	(Nosil	&	Crespi,	2006)	and	represent	
evolutionary	adaptations	that	in	many	cases	have	promoted	diversifi-
cation	within	lineages.

Measuring	 phenotypic	 variation	 in	 organismal	 colour	 patterns	
can	provide	insights	into	their	underlying	developmental	and	genetic	
architecture	 (Klingenberg,	 2010).	 However,	 precisely	 quantifying	
	colour	 pattern	 variation	 is	 challenging.	 Consistent	 comparisons	 of	
colour	patterns	from	images	requires	the	(1)	homologous	alignment	
and	(2)	colour-	based	segmentation	of	the	images.	Homologous	align-
ment	 can	 be	 performed	 by	 transforming	 one	 image	 onto	 another.	
This	 transformation	 can	be	obtained	 from	manually	 placed	homol-
ogous	 landmarks	or	advanced	image	registration	techniques,	which	
can	be	stored	and	utilized	to	align	colour	patterns	extracted	from	the	
images.	Image	segmentation	concerns	the	categorization	of	pixels	by	
colour.	 Previously,	 examples	 of	 colour	 pattern	 quantification	 have	
been	extensively	developed	for	Heliconius	butterflies	(Color	Pattern	
Modelling	[CPM]	in	Le	Poul	et	al.,	2014)	and	primates	(Allen,	Higham,	
&	Allen,	 2015).	However,	 these	 applications	 are	 currently	 not	 eas-
ily	 accessible	 for	 use	 in	 other	 organisms.	 Similarly,	 advanced	 solu-
tions	are	available	for	biomedical	image	analysis	(Schindelin,	Rueden,	
Hiner,	&	Eliceiri,	 2015;	 Schindelin	 et	al.,	 2012;	Modat,	McClelland,	
&	Ourselin,	 2010),	 but	 are	not	 tailored	 towards	quantifying	 colour	
pattern	variation.

Here,	we	present	patternize,	an	approach	to	quantification	of	
colour	pattern	variation	from	2D	images	using	the	R	statistical	com-
puting	 environment	 (R	 Development	 Core	 Team,	 2013).	 The	 pack-
age	 provides	 utilities	 to	 extract,	 transform	 and	 superimpose	 colour	
patterns	 as	well	 as	 downstream	 analysis	 (Figure	1).	 The	 provided	R 
functions	 combine	 single	 transformation	 and	 colour	 extraction	 ap-
proaches.	While	 transformations	are	obtained	 from	manually	placed	
homologous	landmarks	(patLanRGB(),	patLanK() or patLanW())	
or	 automated	 image	 registration	 (patRegRGB(),	 patRegK() or 
 patRegW()),	colour-	based	segmentation	of	the	patterns	is	performed	
using	 threshold	 RGB	 (Red,	 Blue	 and	 Green)	 values	 (patLanRGB() 
or patRegRGB()),	unsupervised	classification	of	pixels	 into	a	set	of	
clusters	 (patLanK() or patRegK())	 or	 watershed	 transformation	
(patLanW() or patRegW()).	By	extracting	and	aligning	colour	pat-
terns	from	image	data	of	large	numbers	of	samples,	patternize	pro-
vides	quantitative	measures	of	variation	 in	 colour	 patterns	 that	 can	
be	used	for	population	comparisons,	genetic	association	studies	and	
investigating	dominance	and	epigenetic	interactions	of	colour	pattern	
variation	in	a	wide	range	of	organisms.	We	demonstrate	the	utility	of	
the	package	with	Heliconius	butterflies	and	more	challenging	examples	
from	guppy	fish,	Galápagos	wolf	spiders	and	salamanders.

2  | ALIGNMENT

Superimposing	 colour	 patterns	 to	 quantify	 variation	 in	 their	 expres-
sion	requires	the	homologous	alignment	of	the	anatomical	structures	
they	occur	in.	Image	transformations	for	this	alignment	can	be	obtained	
from	landmark	based	transformations	or	image	registration	techniques.

2.1 | Landmark based transformations

Landmark	 based	 transformations	 use	 discrete	 anatomical	 points	 that	
are	homologous	among	individuals	in	the	analysis.	Non-	rigid,	but	uni-
form	transformations	 from	one	set	of	 “source”	 landmarks	 to	a	set	of	
“target”	 landmarks	 such	 as	affine	 transformations	 include	 translation,	
rotation,	 scaling	 and	 skewing	 (Hazewinkel,	 2001).	 Additionally,	 non-	
uniform	changes	 in	 shape	between	 the	 source	 and	 target	 landmarks	
can	be	accounted	for	by	storing	the	transformation	as	 if	 it	were	“the	
bending	of	a	thin	sheet	of	metal,”	the	so-	called	thin plate spline	 (TPS)	
transformation	(Duchon,	1976).	Both	the	affine	and	TPS	transformation	
can	be	calculated	from	sets	of	landmarks	(Figure	2a).	We	implemented	
these	landmark	transformations	using	utilities	provided	by	the	R	pack-
age Morpho	(Schlager,	2016).	Landmarks	can	be	transformed	using	an	
arbitrarily	chosen	reference	sample	or	an	average	landmark	shape	ob-
tained	from	a	set	of	samples.	The	average	landmark	shape	is	obtained	
by	means	of	Procrustes	superimposition	of	the	samples	(Goodall,	1991).

2.2 | Image registration

Alternative	 to	 landmark	based	methods,	 fast	and	accurate	 image	 reg-
istration	techniques	are	available	for	calculating	a	transformation	from	

F IGURE  1 Overview of main patternize	functions	and	
functionality.	Images	can	be	aligned	using	homologous	landmarks	
(Lan)	or	automatic	registration	(Reg),	which	aligns	images	using	
common	intensity	patterns.	Colours	can	be	extracted	using	an	RGB	
threshold	(RGB),	k-	means	clustering	(K)	or	by	identifying	watershed	
lines	(W).	The	resulting	extracted	patterns	can	be	summed	and	
visualized	as	heatmaps	or	used	for	principal	component	analysis	and	
calculating	the	relative	area	of	the	colour	patterns
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a	source	to	target	image	based	on	either	intensity	patterns	or	features	
such	as	points,	lines	or	contours	present	in	the	images	(Goshtasby,	2005;	
Figure	2a).	We	use	a	computation	efficient	intensity-	based	image	regis-
tration	technique	implemented	in	the	NiftyReg	image	registration	library	
(Translational	Imaging	Group	(TIG)	2016)	and	made	available	in	R	through	
the	 RNiftyReg	 package	 (Clayden,	 Modat,	 Presles,	 Anthopoulos,	 &	
Daga,	2017).	This	methodology	calculates	the	global	transformation	of	
an	image	by	finding	correspondences	between	sub-	volumes	of	the	two	
images	(Modat,	McClelland,	et	al.,	2010;	Modat,	Ridgway,	et	al.,	2010).	
Correspondence	 is	 assessed	using	 intensity-	based	 similarity	measures	
and	 used	 to	 calculate	 the	 transformation	 parameters	 through	 a	 least	
trimmed	 square	 (LTS)	 regression	 method	 (Modat,	 McClelland,	 et	al.,	
2010;	Modat,	Ridgway,	et	al.,	2010).	The	number	of	corresponding	sub-	
volumes	 to	be	 included	or	considered	as	outliers	 in	 the	calculation	of	
the	transformation	can	be	varied	by	the	user.	The	global	transform	cal-
culated	by	NiftyReg	can	be	rigid	(i.e.	including	translation,	rotation	and	
scaling)	or	affine	(i.e.	translation,	rotation,	scaling	and	skewing).

3  | COLOUR PATTERN EXTRACTION

Studying	variation	 in	colour	patterns	requires	the	correct	 identifica-
tion	of	the	colour	boundaries.	patternize	provides	functionality	to	

categorize	the	distribution	of	colours	using	either	an	RGB	threshold,	
k-	means	clustering	or	watershed	transformation.

3.1 | RGB threshold

Colour	boundaries	can	be	extracted	from	images	or	the	trait	of	inter-
est	using	an	RGB	threshold	(Figures	2,	3).	By	selecting	pixels	within	a	
specified	colour	range	(specified	as	RGB	value	and	offset)	we	provide	
a	 basic	 image	 segmentation	 approach	 that	 works	 well	 for	 extract-
ing	distinct	colour	patterns.	Additionally,	for	distinct	colour	patterns,	
the	RGB	value	can	be	iteratively	recalculated	as	the	average	for	the	
extracted	 colour	pixels.	 This	 latter	 approach	permits	patterns	 to	be	
easily	combined	when	extracted	from	sets	of	 images	that	may	have	
been	taken	under	different	light	conditions	resulting	in	differences	in	
intensity	and	contrast.

3.2 | k-Means clustering

We	implemented	an	unsupervised	approach	for	colour-	based	 image	
segmentation	 using	 k-	means	 clustering	 (Figures	4,	 5)	 (Hartigan	 &	
Wong,	1979).	This	algorithm	assigns	pixel	RGB	values	to	k	clusters	by	
iteratively	assigning	each	pixel	 in	the	 image	to	the	RGB	cluster	that	
minimizes	 the	 distance	 between	 the	 pixel	 and	 the	 cluster	 centres.	

F IGURE  2 Comparison	of	image	transformation	using	landmarks	or	automated	registration	for	quantification	of	colour	pattern	variation.	
(a)	Illustration	of	transformation	strategies	of	a	source	(green)	image	to	a	target	(grey)	image.	The	thin	plate	spline	(TPS)	transformation	from	
the	source	to	target	landmarks	is	illustrated	by	the	deformed	grid	and	can	be	used	to	transform	the	image	or	extracted	colour	pattern.	Image	
registration	attempts	to	find	common	patterns	in	images	and	align	the	source	(green)	image	to	the	pixel	coordinate	system	of	the	target	(grey)	
image.	Note	the	extracted	colour	pattern	in	red.	(b)	Example	comparison	between	landmark	approach	for	colour	pattern	alignment	for	ten	
butterfly	wings	of	male	Heliconius erato hydara.	For	the	landmark	approach,	we	used	TPS	transformation.	For	the	image	registration	approach,	
we	used	affine	transformation	and	75%	of	sub-	volumes	included	as	inliers

(a)

(b)
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Cluster	centres	are	recalculated	each	iteration	by	averaging	all	pixels	
in	 the	cluster	until	 convergence.	We	 implemented	k-	means	cluster-
ing	using	the	R	package	stats	 (R	Development	Core	Team,	2013).	
Clusters	are	first	obtained	from	a	reference	image	and	then	used	as	
initial	cluster	centres	for	the	k-	means	clustering	of	the	subsequently	
analysed	images.	This	allows	the	program	to	match	clusters	that	repre-
sent	the	same	colour	pattern	in	different	images.	For	k-	means	cluster-
ing,	the	number	of	clusters	must	be	defined	manually.	For	organisms	
with	less	distinct	pattern	boundaries,	this	is	best	done	by	testing	dif-
ferent	numbers	of	clusters	and	choosing	a	number	that	best	assigns	
pixels	to	colour	patterns.

3.3 | Watershed transformation

The	watershed	transformation	 is	a	powerful	 tool	 for	 image	segmen-
tation	 (Figure	6;	 Beucher,	 1991).	 The	 concept	 of	 watershed	 treats	
the	 image	as	 a	 topographic	map	by	 calculating	 a	gradient	map	with	
high	values	in	parts	of	the	image	where	pixel	values	change	abruptly	
(Figure	6b).	Subsequently,	a	flooding	process	propagates	pattern	and	
background	labels	guided	by	the	gradient	map.	Continuing	the	flooding	

until	pattern	and	background	labels	meet,	determines	the	watershed	
lines	 (ridges	 in	 the	 topography)	 that	are	used	 to	segment	 the	 image	
(Figure	6c).	We	 implemented	 the	 watershed	 algorithm	with	 utilities	
from	the	R	package	imager	 (Barthelme,	2017)	 that	 is	based	on	the	
image	processing	library	CImg	(Tschumperle,	2004).	In	our	implemen-
tation,	the	pattern	and	background	labels	are	chosen	by	manually	iden-
tifying	at	least	one	pattern	and	one	background	pixel	(at	least	one	for	
each	separate	pattern	and	background	element).	This	manual	assign-
ment	helps	the	user	to	overcome	potential	differences	in	image	light-
ning,	glare	or	overlap	between	pattern	and	background	RGB	values.

4  | OUTPUT

The main patternize	 functions	generate	a	 list	of	 extracted	col-
our	patterns	from	each	image	stored	as	a	raster	object	(Hijmans,	
2016).	These	extracted	patterns	can	be	summed	and	visualized	as	
heatmaps	or	used	 to	calculate	 the	 relative	area	of	 the	colour	pat-
terns.	 To	 better	 characterize	 variation	 in	 colour	 patterns	 among	
samples,	we	implemented	linear	principal	component	analysis	(PCA).	

F IGURE  3 Example	of	image	
registration	and	threshold	colour	extraction	
in	the	forewing	band	area	of	Heliconius 
erato erato	(n	=	10)	and	hybrid	(n	=	10)	
butterflies	(French	Guiana).	(a)	Example	
of	original	images	with	a	white	line	
indicating	the	forewing	band	area.	The	
hybrid	represents	a	naturally	occurring	
backcross	in	a	hybrid	zone	with	Heliconius 
erato hydara	(see	Figure	2)	that	results	in	
red	colour	expression	in	the	forewing	band.	
(b)	Density	plot	showing	the	probability	
to	find	a	sample	with	a	certain	percentage	
of	coloured	area	in	the	wing	expressing	
yellow in H. e. erato	and	red	in	the	hybrid.	
(c)	Visualizing	the	variation	in	colour	
pattern	expression	in	a	heatmap	shows	a	
consistently	larger	pattern	in	the	hybrid	
phenotypes	(H. e. erato:	left,	hybrid:	middle,	
hybrid minus H. e. erato:	right).	(d)	Principal	
component	analysis	confirms	that	the	main	
axis	of	variation	(PC1)	is	related	to	size	
of	the	pattern	(yellow	or	red	in	H. e. erato 
and	hybrids,	respectively)	and	separates	
the	H. e. erato	and	hybrid	samples.	The	
second	principal	component	(PC2)	axis	
highlights	more	complex	shape	differences	
in	the	forewing	band	among	the	samples	
as	demonstrated	by	the	shape	changes	
of	the	colour	patterns	along	the	principal	
component	axis

(a)

(c)

(d)

(b)
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For	an	extracted	colour	pattern,	PCA	can	be	performed	on	the	bi-
nary	 representation	of	 the	aligned	colour	pattern	 rasters	obtained	
from	each	sample	(Figures	3–5).	In	this	matrix,	pixel	coordinates	that	
have	the	colour	of	interest	in	a	sample	have	a	value	of	one,	whereas	
pixel	coordinates	without	the	colour	have	the	value	zero	assigned.	
The	 variance–covariance	 matrix	 obtained	 from	 the	 binary	 matrix	
for	 a	 colour	 is	 suitable	 for	PCA,	which	allows	visualizing	 the	main	
variations	 in	 colour	pattern	boundaries	 among	or	between	groups	
of	 samples,	 as	well	 as	 the	predicted	 colour	pattern	 changes	 along	
the	principal	component	(PC)	axis	(Johnson	&	Wichern,	2007).	In	the	
visualization	of	 the	predicted	colour	pattern	changes,	positive	val-
ues	present	a	higher	predicted	expression	of	the	pattern,	whereas	
negative	values	present	the	absence	of	the	pattern.	Note	that	parts	
of	the	colour	patterns	that	are	expressed	in	all	considered	samples	
have	 a	 predicted	 value	 of	 zero,	 as	 these	 pixels	 do	 not	 contribute	
variance	for	the	PCA	analysis.

5  | EXAMPLES

5.1 | RGB threshold pattern extraction in Heliconius 
butterflies

We	demonstrate	 the	utility	of	 image	 alignment	 and	RGB	 threshold	
extraction	in	the	forewing	band	area	of	Heliconius erato	populations	

(Figure	2).	Heliconius	butterflies	from	the	Neotropics	display	great	di-
versity	in	forewing	band	shape,	which	is	mainly	defined	by	expression	
of	 the	wntA	 gene	 (Martin	et	al.,	 2012;	Van	Belleghem	et	al.,	 2017).	
Expression	of	red	pigments	in	the	wing	scales	is	on	its	turn	defined	
by	 expression	of	 the	optix	 gene	 (Reed	 et	al.,	 2011).	Comparison	of	
the	 landmark	 and	 image	 registration	 approach	 applied	 to	 the	 red	
forewing	 band	variation	 in	Heliconius erato hydara	 shows	 that	 both	
methods	 perform	well	 (Figure	2b).	The	TPS	 transformation	 used	 in	
the	landmark	approach	resulted	in	a	better	fit	to	the	internal	struc-
tures	of	the	wing	(i.e.	wing	veins).	The	slight	offset	between	the	col-
our	pattern	and	vein	position	in	the	image	registration	approach	likely	
resulted	from	a	bias	in	the	linear	transformation	towards	aligning	the	
outline	of	the	wing	and	not	including	non-	uniform	changes	in	shape	
within	the	wing.

Next,	 we	 performed	 automated	 image	 registration	 and	 RGB	
threshold	 colour	 extraction	 on	 the	 same	 forewing	 band	 area	 of	 
H. erato erato.	In	this	region	of	the	wing,	H. e. erato	lacks	optix	expression	
and,	 thus,	 red	scales.	However,	naturally	occurring	hybrids	between	 
H. e. erato and Heliconius erato hydara show optix	 expression	 in	 the	
forewing	 band	 area	 (Figure	3).	With	 this	 example,	 we	 demonstrate	
the	 ability	 to	 compare	 homologous,	 but	 differing	 coloured	 pattern	
	elements	(i.e.	yellow	vs.	red).	The	PCA	analysis	and	relative	area	of	the	
extracted	patterns	allow	to	differentiate	the	two	groups	of	butterflies	
and	indicate	overexpression	of	the	colour	pattern	in	hybrids.

F IGURE  4 Example	of	image	registration	and	k-	means	clustering	of	colours	in	guppies	(Poecilia reticulata).	(a)	Original	image	of	a	wild	type	
(WT)	and	golden	mutant	guppy	and	their	k-	means	clustered	representation	(clusters	=	7).	(b)	Heatmaps	and	difference	between	WT	(n	=	10)	and	
golden	mutant	(n	=	10)	for	black	and	orange	colour	clusters.	(c)	Principal	component	analysis	of	the	pixel	matrices	obtained	for	the	black	(left)	
and	orange	(right)	colour	clusters.	Images	were	obtained	with	permission	from	Kottler	et	al.	(2013)

(a)

(c)

(b)
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5.2 | Automated registration and k- means clustering 
in guppies and spiders

To	assess	the	general	utility	of	our	application	across	taxa,	we	ap-
plied	the	automated	registration	and	k-	means	clustering	approach	
to	groups	with	more	complex	body	shape	and	colour	pattern	vari-
ation;	guppy	fish	and	Galápagos	wolf	spiders.	Males	of	the	guppy	
(Poecilia reticulata)	 vary	 greatly	 in	 their	 ornamental	 patterns	 that	
have	 evolved	 in	 response	 to	 both	 natural	 and	 sexual	 selection.	
Several	 mutants	 have	 been	 described	 among	 male	 guppies	 that	
affect	 colour	pattern	expression.	Manually	quantifying	 the	differ-
ences	 in	 colour	 pattern	 expression	 among	 these	 mutations	 has	
provided	valuable	insights	into	the	developmental	basis	and	inter-
actions	 of	 the	 involved	 genes	 (Kottler,	 Fadeev,	Weigel,	&	Dreyer,	
2013).	Here,	we	summarized	and	compared	the	black	and	orange	
colour	patterns	expressed	in	wild	type	(WT)	vs.	golden	mutants	of	P. 
reticulata	males	using	images	obtained	from	Kottler	et	al.,	2013	(im-
ages	were	used	from	backcrosses	obtained	from	golden blue	mutant	
females	with	heterozygous	males	from	crossing	golden blue	with	in-
bred	wild-	derived	Cumána	populations)	(Figure	4).	All	images	were	

aligned	to	a	target	image	using	image	registration	and	colours	were	
k-	means	clustered	into	seven	groups.	Before	k- means colour clus-
tering,	the	background	was	masked	using	the	outline	of	the	guppy	
in	 the	 target	 image.	Our	 analysis	 of	 the	 black	 and	 orange	 colour	
cluster	strongly	matched	the	description	presented	in	Kottler	et	al.	
(2013),	 demonstrating	 the	 absence	 of	 a	 posterior	 orange	 spot	 in	
golden	 mutants	 backcrossed	 into	 a	 Cumána	 population	 genetic	
background	and	more	diffuse	and	shifted	black	ornaments	 in	 the	
golden	mutants.

Wolf	spiders	of	the	genus	Hogna	inhabit	high	elevation	and	coastal	
habitats	on	 the	Galápagos	 islands	Santa	Cruz	and	San	Cristobal	 (De	
Busschere	 et	al.,	 2010).	Despite	 the	 phylogenetically	 close	 relation-
ship	of	the	high	elevation	and	coastal	populations	within	both	islands,	
morphometric	 analysis,	 including	measurements	 of	 colour	 intensity,	
have	highlighted	striking	parallel	phenotypic	divergence	between	the	
high	elevation	and	coastal	species	between	the	islands	(De	Busschere	
et	al.,	2012).	Coastal	species	appear	to	be	paler	with	a	more	conspicu-
ous	median	band	on	the	carapace	compared	to	high	elevation	species.	
Here,	we	demonstrate	the	robustness	of	automated	image	registration	
by	aligning	 the	highly	variable	 images	of	 the	wolf	 spiders	 (Figure	5).	

F IGURE  5 Example	of	image	
registration	and	k-	means	clustering	of	the	
colour	pattern	of	Galápagos	wolf	spiders	
(Hogna).	(a)	From	left	to	right:	example	
of	original	image	(10	images	were	used	
for	each	species),	k-	means	clustered	
image	(k	=	3)	with	removed	background,	
and	alignment	of	the	lightest	colour.	(b)	
Heatmap	corresponding	to	the	lightest	
colour	cluster	focused	on	the	carapace.	
(c)	Map	of	the	Galápagos	islands	with	
colours	indicating	the	distribution	of	four	
Hogna	species,	two	high	elevation	species	
(light	and	dark	green)	and	two	coastal	
species	(red	and	orange).	(d)	PCA	analysis	
of	the	pixel	matrices	obtained	for	the	
lightest	colour	cluster	demonstrates	that	
the	coastal	(Hogna hendrickxi and Hogna 
snodgrassi)	and	high-	elevation	(Hogna 
galapagoensis and Hogna junco)	species	
cluster	phenotypically	together	and	share,	
respectively,	the	presence	and	absence	of	a	
pale	median	band	on	their	carapace.	Images	
were	obtained	with	permission	from	De	
Busschere	et	al.	(2012)

(a) (b)

(c) (d)
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By	focusing	on	correspondence	between	the	images,	the	automated	
image	registration	technique	manages	to	align	the	spider’s	carapace,	
which	 is	morphologically	the	most	consistent	part	 in	the	 images.	By	
assigning	colours	in	the	spiders	to	only	two	clusters,	we	show	a	similar	
pattern	as	described	in	De	Busschere	et	al.	(2012)	in	which	the	coastal	
species	 show	 a	 consistently	 broader	 and	more	 conspicuous	median	
band	 on	 the	 carapace	 and	 pale	 lateral	 bands	 compared	 to	 the	 high	
elevation	species.

5.3 | Watershed pattern extraction in fire 
salamanders

The	glare	that	is	usually	present	in	images	of	amphibians	can	make	
it	challenging	to	correctly	extract	the	colour	patterns.	Additionally,	
some	pattern	elements	may	be	difficult	 to	 identify	based	on	col-
our	 alone.	 To	 overcome	 these	 difficulties,	 we	 illustrate	 the	 wa-
tershed	 segmentation	 using	 images	 of	 fire	 salamanders	 obtained	
from	 Balogová	 and	 Uhrin	 (2015)	 (Figure	6).	 The	 fire	 salamander	
(Salamandra salamandra)	 is	 common	 to	 Europe	 and	 is	 black	 with	
yellow,	 orange	 or	 red	 spots	 or	 stripes.	 The	 watershed	 approach	

confidently	 identifies	 the	 orange	 pattern	 boundaries	 in	 the	 ana-
lysed	 images.	 Combining	 this	 colour	 pattern	 extraction	 approach	
with	 aligning	 the	 images	 allows	 users	 to	 identify	 regions	 in	 the	
salamander’s	 body	 where	 spots	 or	 stripes	 are	 more	 consistently	
expressed.

6  | CONCLUDING REMARKS AND 
RECOMMENDATIONS

6.1 | Alignment

patternize	provides	an	unbiased,	fast	and	user-	friendly	approach	
for	colour	pattern	analysis	that	is	applicable	to	a	wide	variety	of	or-
ganisms. patternize	 takes	 jpeg	 images	 as	 input,	 which	 can	 be	
downsampled	 to	 decrease	 computation	 times.	While	 the	 landmark	
based	 approach	 is	 computationally	 slightly	 faster,	 automated	 image	
registration	removes	the	need	for	labour-	intensive	landmark	setting.	
Moreover,	image	registration	reduces	any	variation	introduced	by	dif-
ferences	in	how	users	manually	place	image	landmarks.	However,	be-
cause	automated	registration	uses	intensity	patterns	in	the	images,	it	

F IGURE  6 Example	of	watershed	
transformation	for	colour	pattern	
extraction	in	fire	salamanders	(Salamandra 
salamandra).	(a)	Original	image.	(b)	Image	
gradient	transformed	to	a	reference	shape	
using	landmarks.	(c)	Transformed	image	
with	watershed	lines	highlighted.	(d)	
Extracted	patterns	using	the	watershed	
lines.	(e)	Heatmap	of	orange	patterns	
extracted	from	ten	male	fire	salamanders.	
Areas	outside	the	red	box	were	masked.	
Images	were	obtained	with	permission	
from	Balogová	and	Uhrin	(2015)

(a)

(d) (e)

(b) (c)
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can	be	highly	sensitive	to	artefacts	in	the	background	and	care	should	
be	taken	by	standardizing	the	experimental	setup.	For	cases	in	which	
the	background	differs	starkly	from	the	studied	object,	functionality	
is	 included	 that	 allows	 users	 to	 remove	 the	 background	 by	 provid-
ing	RGB	cutoff	values.	The	package	also	allows	users	 to	review	the	
image	 registration	 progress	 to	 assess	 the	 quality	 of	 the	 automatic	
registration.

6.2 | Colour pattern extraction

Variation	in	photographic	conditions	complicates	colour	pattern	extrac-
tion.	The	option	for	iteratively	recalculating	the	RGB	value	and	defining	
the	start	clusters	for	k-	means	clustering	from	a	reference	image	can	im-
prove	colour	pattern	extraction	under	these	conditions.	However,	set-
ting	correct	RGB	or	cluster	parameters	may	impact	results	and	should	
be	optimized	for	each	analysis.	Appropriate	RGB	and	offset	values	can	
be	obtained,	 for	 instance,	 by	 extracting	RGB	values	 from	 image	pix-
els	 or	 areas	of	 interest	 (e.g.	 use	sampleRGB()).	Using	 few	or	many	
k-	means	clusters	may,	respectively,	result	in	grouping	colours	of	inter-
est	or	assigning	multiple	clusters	to	a	single	pattern	of	interest.	Finally,	
in	contrast	to	RGB	threshold	colour	extraction	and	k-	means	clustering,	
watershed	transformation	takes	 into	account	the	spatial	proximity	of	
pixels.	Doing	so,	the	interactive	identification	of	pattern	vs.	background	
in	the	watershed	transformation	provides	a	way	to	extract	colour	pat-
terns	that	is	robust	to	variation	in	photographic	conditions.

6.3 | Output

The	output	of	the	main	patternize	functions	are	raster	objects	
(Hijmans,	2016)	that	provide	for	a	wide	range	of	downstream	analyses.	
As	demonstrated	by	the	examples,	we	provide	functions	to	intersect	
(mask)	the	extracted	patterns	with	defined	outlines,	sum	or	subtract	
the	patterns	to	plot	heatmaps,	calculate	the	relative	area	in	which	the	
pattern	is	expressed	and	carry	out	principal	component	analysis	(PCA).	
Overall,	we	hope	this	R	package	provides	a	useful	tool	for	the	commu-
nity	of	researchers	working	on	colour	and	pattern	variation	in	animals.
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