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Missing data are frequent in morphometric studies of both fossil and recent material. A common method of address-
ing the problem of missing data is to omit combinations of characters and specimens from subsequent analyses; how-
ever, omitting different subsets of characters and specimens can affect both the statistical robustness of the analyses
and the resulting biological interpretations. We describe a method of examining all possible subsets of complete data
and of scoring each subset by the ‘condition’ (ratio of first eigenvalue to second, or of second to first, depending on con-
text) of the corresponding covariance or correlation matrix, and subsequently choosing the submatrix that either
optimizes one of these criteria or matches the estimated condition of the original data matrix. We then describe an
extension of this method that can be used to choose the ‘best’ characters and specimens for which some specified pro-
portion of missing data can be estimated using standard imputation techniques such as the expectation-maximiza-
tion algorithm or multiple imputation. The methods are illustrated with published and unpublished data sets on
fossil and extant vertebrates. Although these problems and methods are discussed in the context of conventional
morphometric data, they are applicable to many other kinds of data matrices. © 2006 The Linnean Society of
London, 
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INTRODUCTION

 

The problem of missing data is relatively common in
both observational and experimental studies in the
biological, archaeological, and palaeontological sci-
ences. Morphometric data sets, whether of fossil or
extant organisms, usually consist of many characters
(mensural variables) measured on each specimen
(observation), often with complex patterns of missing,
uncertain, or indeterminate values.

Because multivariate morphometric procedures gen-
erally require complete data matrices, with all char-
acter values present for all specimens, there are two
possible solutions (Fomby, 1998). The first and better-
studied solution is to estimate missing values from the
available data (Beale & Little, 1975; Rubin, 1976; Little
& Rubin, 1987). A number of statistical techniques
have been developed over the past 30 years for esti-

mating or imputing missing data (Allison, 2001). These
vary from the simplest (and highly inadvisable)
approach of replacing missing values by the univariate
character means (Wilks, 1932), to sophisticated
multivariate methods based on maximum-likelihood or
Bayesian probabilities. The most commonly used
multivariate method is the expectation-maximization
(EM) imputation method (Dempster, Laird & Rubin,
1977; Strauss, Atanassov, & Oliveira, 2003), which esti-
mates all missing values in the data matrix as a set in
an iterative fashion via the covariance or correlation
matrix. We do not address multiple imputation in this
discussion because that method is specific to a partic-
ular kind of analysis and does not produce a single ‘best’
complete data matrix, as fully parametric ‘single-impu-
tation’ procedures do (Rubin, 1996; Schafer & Olsen,
1998). Missing values can be estimated if they do not
comprise too large a proportion of the data matrix.

The second, much more common solution to the
problem of incomplete data is to omit the specimens or
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characters having missing values (marginalization),
which can seriously reduce the sample size available
for analysis (Gauthier, Landry, & Lapointe, 2003).
Although omitting missing data reduces statistical
power and can potentially lead to bias of results (Mil-
lis, 2003), it may be necessary if the proportion of
missing data is large. Many alternate complete sub-
sets may be possible (Table 1), and the choice of a par-
ticular complete subset can significantly influence the
conclusions of a study (Proschan 

 

et al

 

., 2001). The
question thus arises as to which particular subsets of

specimens or characters should be used, which in turn
raises the issue of the criterion that should be used to
judge the ‘best’ subset. If the purpose is a multivariate
morphometric study, then the ‘best’ complete subma-
trix might be based on the adequacy of the dataset for
subsequent statistical analysis, or might be selected to
approximate the statistical properties of the original
matrix.

The present study concerns data matrices that
have relatively large proportions of missing data, as,
for example, are common in palaeontological and

 

Table 1.

 

The ten best subsets of complete data (of 203 possible) from a data matrix of log-transformed morphometric
measurements of specimens of the pterosaur 

 

Rhamphorhynchus

 

 (Wellnhofer, 1975), ranked by decreasing condition
number; by decreasing reciprocal condition factor; and by increasing difference between the condition number of the
original matrix and that of the complete subset

Factor value Characters Number of specimens

By condition number
6.337 8 10 11 12 – – – – – – – – 62
6.278 8 10 11 – – – – – – – – – 70
6.207 7 8 10 11 12 15 – – – – – – 41
6.075 7 8 10 11 12 – – – – – – – 59
6.033 7 8 10 11 15 – – – – – – – 46
5.953 7 8 10 11 – – – – – – – – 67
5.906 10 11 12 13 – – – – – – – – 62
5.887 8 10 11 12 13 – – – – – – – 59
5.882 7 8 9 10 11 12 13 15 – – – – 37
5.846 6 7 8 9 10 11 12 13 15 – – – 28

By reciprocal condition number

 

−

 

3.904 1 7 9 – – – – – – – – – 52

 

−

 

3.929 1 8 9 – – – – – – – – – 52

 

−

 

4.175 1 7 8 9 – – – – – – – – 50

 

−

 

4.182 7 8 9 – – – – – – – – – 70

 

−

 

4.578 1 9 10 – – – – – – – – – 51

 

−

 

4.613 1 2 7 8 9 10 – – – – – – 33

 

−

 

4.653 7 9 10 – – – – – – – – – 69

 

−

 

4.660 8 9 10 – – – – – – – – – 70

 

−

 

4.780 1 7 9 10 – – – – – – – – 49

 

−

 

4.787 1 2 4 5 8 9 10 11 12 13 14 15 13

By best matching condition number
0.535 1 2 4 5 8 9 10 11 12 13 14 15 13
0.560 1 2 4 7 8 9 10 11 12 13 14 15 14
0.806 1 8 9 10 – – – – – – – – 48
0.813 4 5 7 8 9 10 11 12 13 – – – 23
1.209 1 2 7 8 9 10 11 14 15 – – – 22
1.243 4 5 8 9 10 11 12 13 14 15 – – 19
1.284 1 7 8 – – – – – – – – – 52
1.291 1 4 5 8 9 10 11 12 13 14 15 – 16
1.411 4 6 7 8 9 10 11 12 13 – – – 23
1.417 4 5 6 7 8 9 10 11 12 13 – – 19

The original matrix contains 96 specimens and 17 characters; complete subsets were constrained to have at least 10
specimens and three characters. Given for each subset are the identities of the particular characters comprising it and
the number of specimens having complete data for those characters.
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archaeological studies. The objectives are: (1) to
describe and evaluate a procedure for examining all
possible subsets of complete characters and speci-
mens and selecting the ‘best’ subset, in terms of the
statistical properties (particularly ‘condition’) of the
resulting submatrix; and (2) to suggest how this
submatrix might then be augmented by the ‘best’
subset of characters and specimens for which miss-
ing data can be estimated. Although the emphasis is
on morphometric studies, the problems and solu-
tions discussed here extend to other multivariate
contexts.

 

SELECTING BEST COMPLETE SUBSETS

E

 

NUMERATING

 

 

 

COMPLETE

 

 

 

SUBMATRICES

 

The procedure for finding all possible subsets of com-
plete characters and specimens is straight-forward
but computationally intensive: examine all possible
combinations of characters and, for each possible com-
bination, find all the specimens having complete data.
Unless the distributional properties of the missing
data within the matrix are known precisely, the prob-
lem is NP-complete and no method other than brute
force is possible. For morphometric studies, a mini-
mum of three characters is generally useful, so the
number of characters examined at a time is varied
from three to 

 

P

 

, the total number of characters
(although the lower limit can be increased). For 

 

p

 

 (

 

≤

 

 

 

P

 

)
characters, the number of possible subsets is the num-
ber of combinations of 

 

P

 

 characters sampled 

 

p

 

 at a
time: 

 

P

 

C

 

p

 

. The total number of subsets 

 

S

 

 is then the
sum of these combinations for 

 

p

 

 

 

=

 

 3, . . . , 

 

P

 

:

 

S 

 

becomes relatively large for numbers of characters
greater than 20 or so (e.g. 

 

P

 

 

 

=

 

 15, 

 

S

 

 

 

=

 

 32 647; 

 

P

 

 

 

=

 

 20,

 

S

 

 

 

=

 

 1048 365; 

 

P

 

 

 

=

 

 25, 

 

S

 

 

 

=

 

 33 554 106), and so this pro-
cedure is impractical for more than approximately 25
characters. For larger numbers, the characters having
the greatest numbers of missing values can first be
omitted. For data sets having more characters than
specimens (e.g. the 

 

Archaeopteryx

 

 data described
below), the roles of characters and specimens can be
inverted for this purpose.

Numbers of characters and specimens for all possi-
ble complete submatrices are illustrated in Figure 1
for four important palaeontological data sets having
substantial amounts of missing data: 

 

Rhamphorhyn-
chus

 

, with 96 specimens, 17 characters, and 35.3%
missing values (Wellnhofer, 1975); 

 

Pterodactylus

 

, with
64 specimens, 13 characters, and 11.8% missing
values (Wellnhofer, 1970); 

 

Pteranodon

 

, with 511
specimens, 14 characters, and 83.2% missing values
(Bennett, 1991); and 

 

Archaeopteryx

 

, with seven speci-
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p P p
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p
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p
p

P
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mens, 132 characters, and 50.5% missing values
(Wellnhofer, 1974, 1988, 1993). 

 

Rhamphorhynchus

 

and 

 

Pterodactylus

 

 are Late Jurassic pterosaurs (from
Solnhofen, Germany) and 

 

Pteranodon

 

 is a Late Creta-
ceous pterosaur (from North America). Twelve speci-
mens (Wellnhofer’s numbers 88, 89, 91, 93, 96–98,
100, 102–104, and 107) were omitted from the 

 

Rham-
phorhynchus

 

 data set because of excessive numbers of
missing data. For the 

 

Archaeopteryx

 

 data set, some of
the missing data are unpublished but are potentially
available from known specimens. The published

 

Archaeopteryx

 

 data were used previously for a multi-
variate analysis of allometric patterns by Houck,
Gauthier & Strauss (1990).

As the number of characters in the subset increases,
the number of specimens decreases on average
(Fig. 1), reflecting the trade-off in omitting characters
vs. specimens from the original data sets. The struc-
ture of the patterns of the scatterplots of numbers of
specimens vs. characters reflects the unevenness of
the distribution of missing values in the data sets. For
example, in the 

 

Rhamphorhynchus

 

 data set, most of
the complete values are concentrated in the wing
whereas, in the other data sets, the missing values are
more randomly scattered among characters and
specimens.

 

D

 

IFFERENT

 

 

 

SUBSETS

 

 

 

CAN

 

 

 

PRODUCE

 

 

 

DIFFERENT

 

 

 

RESULTS

 

The differences in combinations of specimens and
characters can produce differing results in a multi-
variate analysis (Proschan 

 

et al

 

., 2001), even if the
specimens having missing data are representative of
the entire sample. For example, discriminant analyses
of three species of 

 

Rhamphorhynchus

 

 based on two dif-
ferent complete subsets (Figs 1A, 2) suggest different
conclusions about interspecific relationships and
degrees of distinctiveness. The species are distin-
guished primarily by differences in body size: 

 

Rham-
phorhynchus longicaudus

 

 and 

 

Rhamphorhynchus
intermedius

 

 are small-bodied whereas 

 

Rhamphorhyn-
chus muensteri

 

 is larger. The analysis based on just
five characters indicates that almost all (99%) of the
discrimination among species is due to size variation,
whereas that based on fewer specimens but ten char-
acters suggests that relatively less discrimination
among species is due to size variation (82%), and the
remaining 18% is due to substantial shape differences
between 

 

Rhamphorhynchus intermedius

 

 and the
other two species. The Mahalanobis distance 

 

D

 

2

 

between the 

 

R. longicaudus

 

 and 

 

R. intermedius

 

 sam-
ples increases from a nonsignificant 16.4 (in units of
variance; 

 

P

 

 

 

=

 

 0.08) for the first subset to a highly sig-
nificant 36.9 (

 

P 

 

=

 

 0.01) for the second. In contrast, the
Mahalanobis distance between the 

 

R. longicaudus

 

 and
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R. muensteri

 

 samples increases from a highly signifi-
cant 100.6 (

 

P 

 

<

 

 0.001) to a larger but nonsignificant
146.1 (

 

P 

 

=

 

 0.07). The differences in statistical resolu-
tion and power are, of course, a consequence of the
differences in numbers of variables and observations,
but the results observed are also a function of the par-
ticular specimens and characters included in the
analysis.

Differences in results thus can substantially affect
the conclusions of a study. For example, Bennett
(1995, 1996), on the basis of only a few characters, con-
cluded that the different forms of 

 

Rhamphorhynchus

 

are conspecific. In contrast, our own studies of the
same taxa using more characters suggest that most of
the forms are sufficiently distinctive to warrant formal
recognition (Atanassov & Strauss, 1999; Atanassov &
Strauss, 2000).

 

S

 

UBSET

 

-

 

SELECTION

 

 

 

CRITERIA

 

There are many different criteria that might be used
for choosing among all possible submatrices of com-
plete data. If the data are to be used for a multivariate
analysis, then the submatrix having the best statisti-
cal properties in some sense might be selected. (This is

probably a better policy than selecting the best subset
based on the biological results because we are likely to
be biased by the latter.) Here, we describe three sta-
tistical criteria that are based on measures of matrix
condition.

 

M

 

EASURING

 

 

 

MATRIX

 

 

 

CONDITION

 

Many standard multivariate methods (e.g. principal
component analysis, discriminant analysis) are vari-
ants of an eigenanalysis or singular-value decomposi-
tion of the covariance or correlation matrix derived
from the data matrix (Tabachnick & Fidell, 2006).
Simple functions of the spread of the eigenvalues of a
matrix provide useful diagnostics for the numerical
stability of a matrix. Measures of condition of a matrix

 

X

 

 are based on the eigenvalues (characteristic roots) of

 

X

 

¢

 

X

 

 and measure the degree to which small relative
changes in 

 

X

 

¢

 

X

 

 produce large relative changes in the
inverse (

 

X

 

¢

 

X)

 

-

 

1

 

 (Groß, 2003). The spectral-norm condi-
tion number 

 

C

 

, the square-root of the ratio of the larg-
est eigenvalue to the smallest, is commonly used to
measure the degree to which the covariances capture
linear dependencies, the information that all variables
have most in common. Its value is undefined for a sin-

 

Figure 1. Scatterplot of possible combinations of specimens and characters having complete data, for specimens of (A)
Rhamphorhynchus, (B) Pteranodon, (C) Archaeopteryx, and (D) Pterodactylus. Each point represents one or more unique
combinations of specimens and characters. Numbered solid circles represent complete subsets based on: (1) the maximum
condition index; (2) the maximum reciprocal condition index; and (3) the best matching condition index.
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gular matrix (i.e. one containing linear dependencies
among the variables), and in fact the base-b logarithm
of C is an estimate of how many base-b digits are lost
in solving a linear system with that matrix; that is, C
estimates the worst-case loss of precision due to com-
monality of structure.

Condition numbers and their reciprocals can be
expressed in log-ratio form, ignoring the square roots:

C

C

P
P

r
P

p

= Ê
Ë

ˆ
¯ = ( ) - ( )

= Ê
Ë

ˆ
¯ = ( ) - ( )

ln ln ln ,

ln ln ln ,

l
l

l l

l
l

l l

1
1

1
1

where λ1 and λP are the first and last ordered eigen-
values (sorted high to low), respectively, for P vari-
ables, and Cr is the reciprocal of C. Values of Cr on this
logarithmic scale are the negative values of C, and vice
versa. Both C and Cr are undefined for singular cova-
riance matrices, for which one or more of the last
ordered eigenvalues are zero.

We have made a further modification of the condi-
tion and reciprocal-condition numbers, using instead
the log-ratios of the first and second eigenvalues
rather than the first and last:

These versions are log-transformed condition indices
for the second eigenvalue (Groß, 2003), and have sev-
eral advantages over the conventional condition num-
bers. First, C′ and C′r  are defined for nonpositive-
definite or positive semidefinite covariance matrices
(i.e. having one or more negative or zero eigenvalues),
both singular and nonsingular, whereas C and Cr are
defined only for positive definite covariance matrices
(having all positive eigenvalues). Second, C′ and C′r
are nearly linearly correlated with the skewness of
the eigenvalue distribution and with the mean corre-
lation among the variables (Fig. 3C, D), both of which
are measures of covariance structure. In contrast to
this approximately linear behaviour of C′ and C′r, the
conventional measures C and Cr are dispropor-
tionately sensitive to high levels of correlation and
skewness of the eigenvalues (Fig. 3A, B). These rela-
tionships were determined by simulation for 30 obser-
vations and 12 variables constituting a homogeneous,
multivariate normal sample by: (1) systematically
varying the population correlation from 0.01 to 0.99,
in increments of 0.01; (2) generating repeated random
samples, 1000 per correlation level, from each popula-
tion using the method of Kaiser & Dickman (1962);
(3) calculating the eigenvalues of the correlation
matrix of each random sample and corresponding
condition indices and eigenvalue skewness values;
and (4) plotting the means among replicates as a
function of level of correlation and eigenvalue
skewness.

SELECTING SUBSETS BASED ON MATRIX CONDITION

Our initial assumption was that the ‘best’ complete
submatrix of data should be the one that corresponds
in some way to the intended method of data analysis.
For example, when the purpose of the study is to char-
acterize patterns of allometric size variation or of size-
invariant variation in shape among individuals via
some form of eigenanalysis (e.g. principal component
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Figure 2. Discriminant analyses among species of Rham-
phorhynchus based on two different complete submatrices
of data. Species 1, Rhamphorhynchus longicaudus; 2,
Rhamphorhynchus intermedius; 3, Rhamphorhynchus
muensteri. A, discriminant function analysis (DFA) based
on 48 specimens and five characters. B, DFA based on 16
specimens and 10 characters.
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analysis or common principal component analysis;
Flury, 1988), the condition index C′, which measures
the ability of the covariances to capture the informa-
tion that all variables have in common, should mea-
sure the stability of the analysis with respect to the
data. In this case, the complete submatrix yielding the
covariance matrix with the greatest condition index,
max C′, might be expected to have the best statistical
properties for such an analysis.

However,  if  the  purpose  of  the  analysis  is  to  use
a method that involves a matrix inversion (e.g.
multivariate analysis of variance, discriminant or
canonical-variate analysis, estimation of Mahalanobis
distances) or if the smaller eigenvectors are otherwise
important (Jolliffe, 1982), then the greatest reciprocal
condition index, max C′r, which measures the stability
of the covariance matrix to inversion, should charac-
terize the complete submatrix having the best corre-
sponding statistical properties.

Rather than matching the analytic method, a third
possibility is that, for any kind of analysis, we identify
the complete submatrix having statistical properties
that best match those of the original data matrix. In
this case, we might estimate the condition index

associated with the original matrix and choose the
complete submatrix that best matches it:

where C′o  is the estimated condition index of the orig-
inal matrix and C′s  is the condition index of the com-
plete submatrix.

MATCHING MATRIX CONDITION OF THE ORIGINAL 
MATRIX

Finding the complete submatrix of the data having a
covariance matrix that best matches the covariances
of the original (target) matrix might appear to be the
best overall solution to the problem. However, if a sub-
matrix is produced by omitting variables, the covari-
ance matrices of the original and submatrices will be
of different dimensions and a direct comparison is not
possible. Because the first few eigenvectors and corre-
sponding eigenvalues capture the most important
structural aspects of a covariance matrix, comparison
of the first few of these elements appears to be a rea-
sonable alternative. Here, we concentrate on the first
two eigenvalues (via the modified condition index),

min minD ¢ = ¢ - ¢( )C C Co s

Figure 3. Relationships of the condition index C and the modified condition index C′, respectively (both in logarithmic
form) to (A, C) the mean level of correlation within the data matrix and (B, D) the skewness of the eigenvalue distribution
of the covariance matrix.
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although comparison of a larger number of eigen-
values could provide a more resolved measure of
congruence.

An important problem is how to estimate the eigen-
values of the original matrix containing missing
values. Very little work has been done concerning
methods of directly obtaining eigenvalues and
eigenvectors in the presence of missing data. More
commonly, estimates of the covariance or correlation
matrix are obtained using missing-data imputation
techniques. For small numbers of missing values, this
can be performed using maximum-likelihood methods.
However, for relatively large amounts of missing data,
the problem is more serious, given the requirements
that a nonsingular covariance matrix must be not only
real-symmetric, but also positive-definite (i.e. with all
eigenvalues greater than zero). If the covariances
among pairs of variables are estimated by pairwise

deletion (Wilks, 1932), using only observations for
which both variables have values, the resulting matrix
will be only an approximate covariance matrix
because the individual covariances will have been con-
structed from different, and possibly inconsistent, sets
of observations (Hill & Thompson, 1978; Arbuckle,
1996). Such a matrix will be real-symmetric but, in the
worst case, may have negative eigenvalues. The con-
dition index of such a matrix is likely to be biased.

Because little empirical literature exists on this
problem, the probability of obtaining a nonpositive-
definite covariance matrix by pairwise deletion was
estimated by simulation (Fig. 4). Number of variables
was set at 5, 10, 15, and 20; number of observations
was varied from 10 to 100 in increments of 5; and pro-
portion of missing data was varied from 0% to 50% in
increments of 1%. For each combination: (1) a random
data matrix was generated using the method of Kaiser

Figure 4. The estimated probability of a sample covariance matrix being positive-definite, as a function of the properties
of the sample data matrix: number of variables, number of observations, and proportion of missing completely at random
values. Interpolated probability surfaces were estimated by simulation, as described in the text.
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& Dickman (1962) with a population correlation of 0.7
for all pairs of variables; (2) the required number of
missing values was randomly scattered into the data
matrix; (3) the covariance matrix was estimated by
pairwise deletion; (4) a singular-value decomposition
was performed on the estimated covariance matrix;
and (5) the matrix was scored as either positive-defi-
nite or not, based on the occurrence of zero or negative
eigenvalues. This procedure was repeated 1000 times
for each combination of variables, observations and
proportion of missing data, and the proportion of non-
positive-definite matrices out of the total was taken to
be an estimate of the probability of obtaining such a
matrix under these conditions. The interpolated sur-
faces of Figure 4 suggest that, for reasonable numbers
of specimens and characters, the probability of obtain-
ing a proper, positive-definite covariance matrix by
pairwise deletion of missing values is generally very
low.

Given that this is likely to be a common problem,
the challenge is then to find a positive-definite covari-
ance matrix that is a close approximation of the indef-
inite one. There have been two basic approaches to
this problem. The first is to estimate the missing
values within the data matrix so as to stabilize the
covariances; this is generally carried out using the
expectation-maximization method (Dempster et al.,
1977). Because the context of the present study is to
reduce data matrices having large proportions of miss-
ing values, and imputation methods often fail to con-
verge or to provide realistic estimates of missing
values for large amounts of missing data, this alter-
native might not be feasible.

The second approach is to directly estimate the ‘clos-
est’ proper covariance matrix, altering the improperly
structured covariance matrix directly to approximate
a positive-definite matrix by altering the eigenvalues
until the minimum is greater than zero. The ‘bending’
method of Hayes & Hill (1980, 1981) has most com-
monly been used to constrain such estimated covari-
ance matrices, particularly in quantitative genetics
(Essl, 1991) and econometrics (Rebonato, 1999). The
main disadvantages of the bending method are: (1)
that it requires as a starting point and ‘anchor’ a pos-
itive-semidefinite matrix, the choice of which in this
case is not obvious; (2) that the method does not pre-
serve the covariances for pairs of variables having no
missing data; and (3) that there is no way of determin-
ing to what extent the resulting matrix is optimal in
any easily quantifiable sense. Modifications of the
bending method have been proposed by Essl (1991)
and Jorjani, Klei & Emanuelson (2002, 2003), whereas
other methods for covariance or correlation matrices
have been described by Frane (1976), Hu (1995),
Kupiec (1998), Lucas (2001), Chen & McInroy (2002),
and Higham (1989, 2002), amongst others. Knol & Ten

Berge (1989) proposed a least-squares approximation
for correlation matrices employing oblique Procrustes
rotation. This technique allows the correlations for
pairs of variables having complete data to remain
unchanged. For the present study, we implemented
their least-squares algorithm, secondarily estimating
the corresponding covariance matrix as C = SRS,
where R is the estimated correlation matrix and S is a
diagonal matrix of the standard deviations of each
variable obtained from all data available for that
variable.

EXAMPLES

In addition to exemplifying the trade-off between
numbers of specimens and numbers of characters for
several empirical data sets, Figure 1 also indicates the
particular complete subsets identified by the three
optimization criteria. The three criteria can produce
substantial differences in the size and structure of the
best complete subset. Table 1 shows the ten best sub-
matrices from the log-transformed Rhamphorhynchus
data set of Figure 1(A), ranked by decreasing condi-
tion, C′, by decreasing reciprocal condition, C′r, and by
increasing difference between the condition of the
original matrix and that of the complete subset, ∆C′.
Table 1 illustrates that the particular complete sub-
sets identified by each criterion can differ markedly
not only in the numbers of characters selected, but
also in their particular identities. Even when the char-
acters included in two or more subsets are nearly iden-
tical, the numbers and combinations of specimens
included can vary considerably.

The condition (or reciprocal condition) of a subma-
trix depends on the structure of the covariances
among the particular characters sampled (Cole et al.,
1994), and therefore is not a simple function only of
numbers of characters and specimens. For example,
for the Rhamphorhynchus, Pteranodon, and Archaeop-
teryx data sets, the best-conditioned submatrices by
the C′r  criterion always involve few characters, but not
always the greatest number of specimens (Fig. 1).

A Matlab (Mathworks, 1997) function varcomb,
which finds and ranks all possible submatrices based
on the optimization criteria used in the present study,
is available at: http://www.biol.ttu.edu/Strauss/
Matlab/Matlab.htm.

ASSESSMENT OF CRITERIA FOR MULTIVARIATE 
ANALYSES

Given that these optimization criteria appear to be
reasonable for selecting particular complete subma-
trices of data to be used for subsequent analyses, the
question remains as to how they might perform in
real studies. Our initial working assumption was

http://www.biol.ttu.edu/Strauss/
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that the max C′ criterion would be best for eigenan-
alysis problems, max C′r  would be best for methods
involving matrix inversions, and the ‘best matching’
criterion min ∆C′ would be a reasonable compromise
that would be suboptimal for each but that would
preserve the original structure of the data to the
greatest extent. To pursue this question, we simu-
lated their performance for two multivariate meth-
ods commonly used in morphometric studies,
principal component analysis (PCA) and discrimi-
nant function analysis (DFA = canonical variate
analysis), using two complete multiple-group data
sets differing in the amount of discrimination among
the groups. The Canis data set (Mammalia, Canidae:

Atanassov, 1996; Strauss et al., 2003) comprises
three species (Canis aureus, N = 30; Canis lupus,
N = 27; Canis familiaris, N = 24), with a total of 81
specimens and 15 cranial morphometric characters.
The Cottus data set (Pisces, Cottidae: Strauss, 1989;
Strauss, 1991) also comprises three species (Cottus
cognatus, N = 17; Cottus bairdi (cf. Cottus caeruleo-
mentum; Kinziger, Raesly, & Neely, 2000), N = 19;
Cottus carolinae, N = 16) with 52 total specimens and
15 morphometric characters; specimens and charac-
ters were selected by random draw from larger sets
to be comparable in number to those of the Canis
data set. Basic PCA and DFA results are shown in
Figure 5. The Canis species are quite distinguishable

Figure 5. Four analyses of two complete empirical data sets used for missing-data simulations. A, principal component
analysis (PCA) of data from three species of Canis, with 81 specimens and 15 characters. B, discriminant function analysis
(DFA) of the Canis data. C, PCA of data from three species of Cottus, with 52 specimens and 15 characters. D, DFA of the
Cottus data.

13 13.5 14 14.5 15

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

1

2

3

PC1 (88.9%)

P
C

2 
(3

.2
%

)

A

 Canis  PCA

-8 -6 -4 -2 0 2 4 6

-4

-3

-2

-1

0

1

2

3

4

5

6

1
2

3

DF1 (77.5%)

D
F

2 
(2

2.
5%

)

B

Canis DFA

20 25 30 35 40 45

-1

-0.5

0

0.5

1

1.5

2

1

2

3

PC1 (92.1%)

P
C

2 
(1

.4
%

)

C

 Cottus  PCA

-4 -3 -2 -1 0 1 2
-3

-2

-1

0

1

2

3

1

2

3

DF1 (67.0%)

D
F

2 
(3

3.
0%

)

D

Cottus  DFA



318 R. E. STRAUSS and M. N. ATANASSOV 

© 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 88, 309–328

in terms of the first two principal components and
the discriminant functions (with pairwise Mahalano-
bis distances D2 in the range 97–216), whereas the
Cottus species overlap widely on the first two compo-
nents and marginally on the discriminant functions
(D2 in the range 5.6–11.2).

For each of the four analyses (two methods × two
empirical data sets), we assessed the behaviour of the
three optimization criteria (C′, C′r, and ∆C′) with
respect to a null hypothesis that the optimal complete
submatrix performs no better than a randomly
selected complete submatrix. Because we began with
complete data matrices, we could simulate the occur-
rence of varying amounts of missing data and compare
the results from any complete submatrix to the origi-
nal results based on the complete data. For this
purpose, we used two performance criteria, one based
on congruence of the loadings of variables (function
coefficients), and the second on congruence of the pro-
jection scores of observations. Both were measured as
product-moment correlations. For PCAs, character
congruence was measured as the correlation between
the corresponding loadings on the first two compo-
nents from the reduced submatrix and original com-
plete-matrix results, whereas specimen congruence
was measured as the correlation between the corre-
sponding scores on the first two components. For
DFAs, correlations were between corresponding
loadings and scores on the (only) two discriminant
functions.

The amount of missing data introduced into the
complete data matrix was varied from 5% to 50% in
increments of 5%. For each iteration of the simulation,
the required number of missing values was scattered
randomly throughout the matrix, with each value
equally likely to be assigned as missing. All possible
complete submatrices were found, and the submatri-
ces corresponding to the three criterion values (max
C′, max C′r, min ∆C′) were identified; in addition, a
random complete submatrix was selected, correspond-
ing to the null hypothesis. Character congruence and
specimen congruence with the complete-matrix anal-
ysis were determined for each and saved. This proce-
dure was repeated for 1000 iterations to accumulate
randomized sampling distributions of the performance
criteria. Resulting distributions for the two methods
× two empirical data sets are portrayed with box plots
in Figures 6, 7, 8, 9; the four figures correspond to
Figure 5A–D.

Several generalizations can be inferred from the
results of these simulations.

First, the distributions of the character-congruence
and specimen-congruence statistics were surprisingly
broad for all three optimization criteria. Even in the
best cases (Fig. 7E, F), some ‘optimal’ complete sub-
sets performed poorly and, for most simulations, the

median correlation levels were typically in the range
of 0.6–0.9.

Second, increasing the amount of missing data has
an inconsistent effect on the performance of the com-
plete subsets. In most cases, increasing the amount of
missing data from 5% to 10% to 15% produced a con-
sistent but relatively minor decrease in performance.
For some simulations, such as the PCAs of the Cottus
data (Fig. 8), increasing amounts of missing data
produced  a  progressive  decrease  in  performance  up
to approximately 35–40%, with no further decrease
beyond that level. For most other simulations the
effect was less progressive or nonexistent.

Third, in general, none of the three optimization
criteria performs much better than random for the
Canis analyses (Figs 6, 7), with two exceptions: (1)
complete subsets for min ∆C′ (best matching condi-
tion) criterion consistently resulted in significantly
better congruence of scores, but not loadings, for both
PCA and DFA and (2) max C′r  produced significantly
and consistently better congruence of loadings for
DFA, but not of scores. Presumably the three Canis
species are sufficiently distinctive that any complete
subset of data will characterize the underlying
trends and differences almost as well as any other
subset.

Finally, for the Cottus analyses (Figs 7, 8), the min
∆C′ (best matching condition) criterion consistently
performs as well or better than the other criteria for
both PCA and DFA, and much better than random.
The max C′ criterion performs slightly better than
random for the PCA and max C′r  performs much better
than random for the DFA, although neither is consis-
tently better than min ∆C′. It is evident that, because
of the broad overlap of the Cottus species in the
multivariate spaces, different complete subsets can
produce widely varying PCA and DFA results, and
that choice among them can be critical in recovering
the underlying structure of the data.

In general, the results from the simulations sug-
gest that the best overall strategy is to choose the
complete subset that best matches the condition
index, and thus the underlying covariance structure,
of the full matrix. If the structure in the data is obvi-
ous (as in the Canis analyses), the best-matching
criterion performs as well as, and sometimes better
than, a randomly selected complete subset of data.
But if the structure is more subtle (as in the Cottus
analyses), then the performance of the best-matching
criterion is much better than random for both kinds
of analyses.

ESTIMATING PORTIONS OF MISSING DATA

If the proportion of missing data in the original matrix
is not too large, all missing values can be estimated as
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Figure 6. Results from simulations of missing completely at random data, based on principal component analyses of
random subsets of the Canis data. Shown are distributions of correlations of character loadings (first column) and specimen
scores (second column) from principal component analyses of random subsets with the original loadings and scores from
the analysis of complete data (Fig. 5A). Box plots indicate the median, first and third quartiles, and range of each
distribution. Asterisks indicate sampling distributions of correlations having medians significantly greater than the
corresponding null distributions, based on a one-tailed Mann-Whitney test with α = 0.05. See text for details. A, B,
correlations of loadings and scores for random complete submatrices of data. C, D, correlations for complete submatrices
having the maximum modified condition index. E, F, correlations for complete submatrices having the maximum modified
reciprocal condition index. G, H, correlations for complete submatrices having the modified condition index best matching
that of the original complete matrix.
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Figure 7. Results from simulations of missing completely at random data, based on discriminant analyses of random
subsets of the Canis data. Shown are distributions of correlations of character loadings (first column) and specimen scores
(second column) from discriminant function analyses of random subsets with the original loadings and scores from the
analysis of complete data (Fig. 5B). Panels are as indicated in Figure 6.
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Figure 8. Results from simulations of missing completely at random data, based on principal component analyses of
random subsets of the Cottus data. Shown are distributions of correlations of character loadings (first column) and
specimen scores (second column) from principal component analyses of random subsets with the original loadings and
scores from the analysis of complete data (Fig. 5C). Panels are as indicated in Figure 6.
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Figure 9. Results from simulations of missing completely at random data, based on discriminant analyses of random
subsets of the Cottus data. Shown are distributions of correlations of character loadings (first column) and specimen scores
(second column) from discriminant function analyses of random subsets with the original loadings and scores from the
analysis of complete data (Fig. 5D). Panels are as indicated in Figure 6.
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a set using one of a number of different methods. How-
ever, the question of how much missing data is too
much is not easily answered. Despite the ample liter-
ature on missing-value estimation, there is still little
empirical guidance for researchers. Each method is
based on particular assumptions, often involving
homogeneity of observations and characters, multi-
variate normality, and particular random distri-
butions of missing values within the data set or
particular processes hypothesized to have produced
the missing values. Although some comparative
Monte Carlo studies have been carried out to compare
methods, these studies generally: (1) concern types of
data (Roth, Switzer & Switzer, 1999) or methods
(Bello, 1993a, 1995; Liu et al., 1997) that are not rel-
evant to morphometric studies; (2) have been aimed at
evaluating the effects of missing data on particular
kinds of analyses (Basilevsky et al., 1985; Lee, 1986;
van der Heijden, de Vries & van Hooff, 1990; Gorn-
bein, Lazaro & Little, 1992; Lien & Rearden, 1992;
Little, 1992; Twedt & Gill, 1992; Bello, 1993a; Schei-
ner, 1993; Brown, 1994; Carrano, Janis & Sepkoski,
1999); or (3) are based on unrealistically stringent
assumptions.

We are currently carrying out sets of Monte Carlo
simulations of missing-data prediction for biologically
realistic kinds of data structure (Strauss et al., 2003).
The results from these studies suggest that, for mod-
erate numbers of variables, the EM method (Dempster
et al., 1977) is both accurate and precise for relatively
high proportions of missing data (up to almost 50% for
data sets with few characters), even in the presence of
group structure or character suites. However, for cases
in which the proportion of missing data is sufficiently
high that the investigator does not wish to include all
characters and specimens, we suggest here a protocol
for objectively identifying the ‘best’ specimens or
characters to add to a subset of complete data for
estimation purposes. The procedure begins with the
submatrix having the best value for one of the optimi-
zation criteria (e.g. best matching condition) and
sequentially adds specimens or characters until some
specified maximum threshold of missing data (e.g.
10%) have been estimated. There are two possible
choices of how to augment the initial submatrix: (1)
because the statistical power of a multivariate analy-
sis depends primarily on the ratio of numbers of spec-
imens to characters (Tabachnick & Fidell, 2006),
specimens can be added to the initial submatrix, hold-
ing the number of characters constant or (2) if the
number of characters in the initial submatrix is too
few to be meaningful for the purpose of the study,
some combination of characters and specimens can be
added. A Matlab function addmiss, which performs
these operations, is available at the website cited
above.

ADDING SPECIMENS FOR A CONSTANT NUMBER 
OF CHARACTERS

It is generally advisable to maximize the number of
observations relative to the number of variables for a
multivariate analysis; a minimum of two or three
observations per variable is often cited as a rule of
thumb. Thus, an obvious procedure would be to select
an initial submatrix of complete data having both ade-
quate condition and a sufficient number of variables,
and to add to it the specimens having small numbers
of missing values. If the addition of all specimens does
not exceed the specified maximum threshold of miss-
ing data, then all can be added. If the threshold is
exceeded, however, then some subset of additional
specimens must be selected. Although, in general, this
might be the subset of specimens having the fewest
missing values, in practice, this might not be the best
solution because the addition of specimens can alter
the covariance structure among the characters, which
in turn affects the condition of the covariance matrix.

The addition of specimens can be done quasi-
optimally in a stepwise fashion (analogous to the
introduction of variables into a stepwise regression) by
(1) adding a single specimen; (2) predicting the miss-
ing values for that specimen; and (3) calculating and
recording the condition of the matrix with the addition
of that specimen. (4) This is repeated for all specimens,
and the particular specimen responsible for the larg-
est condition index is identified. This specimen is then
added to the initial submatrix and the procedure is
repeated, adding specimens one at a time until the
threshold of missing data has been reached. An alter-
nate criterion would be to add specimens so long as the
condition of the augmented matrix is ‘better’ than that
of the initial complete submatrix. Finally, all of the
missing values are then re-estimated as a set so as to
be maximally consistent with one another, thus mini-
mizing their prediction errors.

The effect of adding specimens in this way is illus-
trated by an analysis of the Rhamphorhynchus data
(Figs 1A, 10). The original data matrix had 16 charac-
ters and 96 specimens, with 35.3% missing values. The
complete submatrix having the maximum condition
index, max C′, has four characters and 61 specimens
(although the best complete submatrix for some larger
number of characters could be used instead). A ceiling
of 15% missing data allowed in this case the addition
of 23 specimens (Fig. 10A), for a total of 84 specimens,
for which values were estimated via the EM algo-
rithm. Although condition of the covariance matrix
initially increases as the first few specimens are
added, it then decreases with increasing number of
specimens, to the point that, after 19 specimens have
been added, the condition falls to below the estimated
condition index of the complete submatrix. This occurs
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Figure 10. A, change in the maximum condition index as a function of adding, to the initial submatrix, specimens
providing up to 15% missing data, for which values have been estimated via the EM algorithm. Data on Rhamphorhynchus
are from Wellnhofer (1975). B, change in the maximum condition index as a function of adding both characters and
specimens providing up to 15% missing data, for which values have been estimated via the expectation-maximization (EM)
algorithm. Solid circles represent addition of characters, open circles the addition of specimens. C, D, as in (A) and (B),
except showing change in the reciprocal condition index as a function of specimens or characters plus specimens. E, F, As
in (A) and (B), except showing change in the best matching condition index as a function of specimens or characters plus
specimens.
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ostensibly because the additional information pro-
vided by the specimens does not offset the internal
redundancy introduced by the estimated missing val-
ues. Note, however, that the change in condition due to
adding specimens having missing data is small in
absolute measure.

The results for adding specimens to the complete
submatrix having the best reciprocal condition, max
C′r, are qualitatively similar (Fig. 10C), although the
identities of the particular characters and specimens
chosen are very different. The size of the best complete
submatrix is three characters and 51 specimens, sub-
stantially smaller than in the preceding case. Addition
of ‘best’ specimens produces an initial increase in C′r,
peaking after addition of six specimens, followed by a
smooth decline in condition. In this case, 27 specimens
have been added before the ceiling of 15% missing
data is attained due to the smaller average number of
missing values per specimen, but because of the
smaller initial set of observations the final sample size
is smaller (78 rather than 84). The absolute change in
reciprocal condition is, again, very small.

When the complete submatrix is chosen by the best
matching criterion, min ∆C′, the results are qualita-
tively different from the preceding cases (Fig. 10E).
The complete submatrix having the best matching
condition index is quite different in size: 12 charac-
ters, but only 14 specimens. For the initial specimens
added, the condition of the augmented matrix for
which missing data are estimated continues to match
that of the original complete submatrix. Only after 20
specimens have been added does the condition of the
augmented matrix begin to degrade in relation to the
original. This is a much more satisfying performance
than with the max C′ and max C′r criteria, but the size
of the final augmented matrix is quite different: 12
characters and 32 specimens. The disadvantage to this
is that the ratio of specimens/characters is much
lower; the advantage is that, even though the number
of specimens is half as large as for the other optimi-
zation criteria, three- to four-fold as many characters
have been included in the final matrix.

ADDING CHARACTERS AND SPECIMENS CONCURRENTLY

The procedure above can be modified slightly to add
both characters and specimens in a stepwise fashion.
First, a character is added to the initial submatrix by:
(1) adding a single character; (2) predicting the missing
values for that character; (3) calculating and recording
the condition of the matrix with the addition of that
character; and (4) repeating this procedure for all char-
acters not already in the submatrix. The character
responsible for the best condition index (according to
one of the three optimization criteria) is then identified
and added to the initial submatrix. Because the addi-

tion of a character for the same number of specimens
will generally decrease the condition of the covariance
matrix, one or more specimens can then be added,
using the method described above, until the matrix
condition has been restored or improved (or, alter-
nately, can be added in proportion to the specimen-to-
character ratio of the original data matrix, whichever
is smaller). Another character and set of specimens can
then be added in the same way, and the procedure is
repeated until the threshold of missing data has been
exceeded. Finally, all of the missing values are re-esti-
mated as a set to minimize their prediction errors.

The second column of Figure 10 illustrates this pro-
cedure for the Rhamphorhynchus data. For the max C′
criterion (Fig. 10B), the initial condition for the com-
plete submatrix is as in Figure 10(A). Addition of char-
acter 4 (that character providing the greatest C′
among all remaining characters) reduces the condition
of the covariance matrix somewhat; addition of several
‘best’ specimens then restores the loss. Note that,
since the best complete submatrix by this criterion has
four characters but 61 specimens, the addition of a sin-
gle character introduces a much larger proportion of
missing data than does the addition of a single speci-
men. Thus, only four items (one character and three
specimens) are added before the missing-data thresh-
old is met, in contrast to the 23 specimens when only
specimens are added. When the max C′r criterion is
applied to select the characters and specimens to be
added (Fig. 10D), the results are qualitatively similar,
although the identities of the particular characters
and specimens selected are very different. The final
matrix size under the 15% missing-data ceiling is
four characters × 57 specimens, as compared to five
characters × 64 specimens for the max C′ criterion.

The best-matching condition criterion (Fig. 10F)
again produces substantially different results. To the
initial complete submatrix of 12 characters and 14
specimens are added two additional characters and 12
specimens. An interesting aspect of the pattern of aug-
mentation is that, in contrast to the other optimiza-
tion criteria, the addition of specimens apparently
does not compensate for the decrease in condition due
to the addition of characters. Although the explana-
tion for this pattern is not apparent, analyses of
several other data sets produce results qualitatively
similar to this. Further investigation of this behaviour
is warranted.

DISCUSSION

Although it is well known that multivariate analyses
of morphometric data can be much more powerful and
informative than univariate or bivariate analyses
(Willig & Owen, 1987; Freeman & Jackson, 1990),
such methods require complete data matrices and
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therefore are often impractical with fossils or delicate
extant material due to the presence of incomplete or
missing structures. In the face of limited data, inves-
tigators commonly delete the characters or specimens
from the analysis that sacrifice the fewest complete
measurements. Although obvious (but wasteful) in
principle, this procedure is complicated in practice by
the fact that deletion of different subsets of characters
and specimens may produce nearly the same amount
of complete data but may have widely varying effects
on subsequent analyses. There has been no previous
systematic attempt to assess the ramifications of
deleting varying subsets of data before multivariate
analyses are carried out, other than trying a number
of combinations and attempting to evaluate the
‘robustness’ of the results from different analyses. We
have proposed one objective method for doing so,
based on several possible measures of the statistical
properties of the resulting data matrix. Although
there is no guarantee that the reduced data matrix
selected by such a criterion will produce the most
meaningful biological interpretations, a well-condi-
tioned matrix will at least provide the most stable sta-
tistical results and, if matched to the original matrix,
will have the greatest likelihood of revealing the same
underlying structure.

The examples that we have used involve taxonomic
comparisons at the species and genus level. Regard-
less of the optimization criterion used, predictions of
missing values are interpolations based upon correla-
tions among the characters, and thus depend upon
those correlations being biologically relevant. The cor-
relations are biologically relevant if the characters
measured among taxa are homologous in some sense
(Rae, 1998; MacLeod, 2001; Guerrero, De Luna, &
Sánchez-Hernández, 2003). Thus, although correla-
tions are likely to be relevant at the population and
species levels, they might or might not be relevant at
higher taxonomic levels. If the data are appropriate
for a morphometric analysis, they are also likely to be
appropriate for predicting missing data. 

The  results  from  our  simulations  suggest  that
the best overall strategy in the face of substantial
amounts of missing data is to choose the complete sub-
set that best matches the estimated condition index of
the full matrix. If the signal-to-noise ratio of the data
is high (as in the Canis analyses), the best-matching
criterion performs as well as, and often better than, a
randomly selected subset of data. But if the structure
is more subtle (as in the Cottus analyses), then the
performance of the best-matching criterion is much
better than random for both kinds of multivariate
analysis considered in the present study. When using
an initial complete submatrix as a basis to augment
with a subset of imputed missing values, the best-
matching criterion usually provides submatrices that

are well-balanced in their inclusion of characters and
specimens. 

Two caveats are warranted. First, these simulations
were carried out under a missing completely at ran-
dom (MCAR) model, which might not be warranted for
all data sets. However, Strauss et al. (2003) demon-
strated that the presence of multiple groups of indi-
viduals or multiple character suites apparently does
not markedly degrade the performance of several mul-
tivariate missing-data estimation methods, and thus
might have at most minor effects on estimation of
matrix condition in the presence of structure. Second,
PCA and DFA are fairly straight-forward applications
of eigenanalysis, and more complicated methods (e.g.
canonical correlation, canonical correspondence anal-
ysis, or partial least squares regression) or nonei-
genanalysis methods (Bello, 1993a; Bello, 1993b;
Kramer & Konigsberg, 1999) might be more sensitive
to the criteria for selecting complete subsets of data.

The ability to predict or impute missing values
based on the covariances among characters would
seem to provide a potentially useful way to summarize
relationships among taxa and characters in the pres-
ence of incomplete data. Every missing value that is
estimated typically allows the introduction of many
more ‘good’ values into the analysis (and thus
increases the degrees of freedom for the actual values
introduced, but not for those estimated from the exist-
ing data). Although imputation methods are well
established in psychometrics and other scientific dis-
ciplines and in the clinical medical literature, their
use in morphometric studies is uncommon and has
remained largely untested (Gunz et al., 2002; Gauth-
ier et al., 2003; Strauss et al., 2003). The stepwise
methods that we have described here provide an ini-
tial, conservative approach to the estimation of miss-
ing data, based again on the principle of providing the
most stable statistical results while attempting to
minimize both the loss of actual data and the number
of missing values estimated. For specimens and char-
acters to be added to the reduced data matrix with this
method not only must they have, on average, fewer
missing values than others in the full data set, but
also they should contribute to the robustness and
internal consistency of the covariance matrix. This
means that they will reinforce the patterns already
present in the reduced data matrix and are unlikely to
be multivariate outliers.
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