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STATISTICAL MODELS IN MORPHOMETRICS:
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2Department of Cell Biology and Anatomy,
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Abstract.—This analysis considers the validity of the assumptions of the Gaussian perturbation
model as applied to landmark data collected for morphometric analyses. The primary conclusion
is that the assumption of homoscedasticity is unrealistic when applied to biological data sets.
We also point out some important difficulties associated with alternate models. [Perturbation

models; models for linear distances.]

Morphometrics is the quantitative anal-
ysis of size and shape. Recent years are
marked by the development of new statis-
tical methods and models for the study of
size, shape and also shape differences be-
tween populations of forms (e.g., Book-
stein et al. 1985, Bookstein 1986, 1989a, b,

“and references therein; Goodall and Bose,
1987). We focus here on methods used to
analyze landmark data. A statistical model
that is commonly used in the development
of statistical procedures is the Gaussion
perturbation model. A basic assumption of
this model as proposed by Bookstein (1984)
is that variability around each landmark is
constant throughout the object.

The purpose of this paper is to examine
this assumption using actual data sets col-
lected for morphometric analyses. Our
conclusion is that real data sets do not nec-
essarily concur with the assumption of
constant variability local to landmarks. We
also point out difficulties associated with
some alternate models suggested in the lit-
erature. Our results underscore the need
for developing models which are more
flexible, and consequently more realistic.
Though technical in nature, we feel the
conclusions of this paper are important for
biologists and scientists who use these
models for morphometric analysis.

*This, is Technical Report #687 from the Depart-
ment of Biostatistics, The Johns Hopkins University.
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In the following sections, we briefly de-
scribe the perturbation model, closely fol-
lowing the description and notation of
Goodall and Bose (1987). We then intro-
duce the data sets and present the results
of our analyses. Finally, we discuss some
alternate models and point out the diffi-
culties associated with them.

GAUSSIAN PERTURBATION MODEL

Let X,, X, ..., X, be N X K matrices of
the coordinates of N landmarks in R¥. K
may equal 2 or 3. Each form, X;, is modeled
as a similarity transformation of a random
first order normal perturbation of the mean
unknown population X,

X;i =bi(X + E)R; + Itf (1)

where
E, = eZX + 0(&®)

and ¢ > 0 is small; the ZX: N x K are in-
dependent matrices of independent iden-
tically distributed N(0, 1) random vari-
ables; b, > 0 is a scaler; R;: K x K is an
orthogonal matrix; and t;: K X 1is a vector.
The triplet (b;, R, t;) specifies the dilation,
rotation and translation components of the
similarity transformation of the E; per-
turbed X. € specifies the variability around
each landmark and is constant throughout
the object. The reader may refer to Book-
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TABLE 1. Two-dimensional landmarks used in analysis of Crouzon, Apert, and normal individuals.

Landmark
number

Landmark name and description

the base of the nasal aperture.

central incisors.

sphenoid bone.

] o G L WN =

Nasion. Point of intersection of the nasal bones with the frontal bone.

Nasale. Inferior-most point of intersection of the nasal bones.

Anterior nasal spine. Anterior-most point at the medial intersection of the maxillary bones at
Intradentale superior. The point is located on the alveolar border of the maxilla between the

Posterior nasal spine. Posterior-most point of intersection of the ﬁght and left palatal shelves.
Tuberculum sella. “Saddle” of bone just posterior to the chiasmatic groove on the body of the

Sella. Most inflexive point of the hypophyseal fossa. The hypophyseal (pituitary) fossa is de-

fined as the bony depression which holds the pituitary gland. This fossa is bounded by tuber-
culum sella anteriorly and posterior sella posteriorly.
8 Posterior sella. A square plate of bone which serves as the posterior border of the hypophyseal

fossa.
9 Basion. The most anterior border of the foramen magnum.
10 Internal occipital protuberance of the cruciate eminence of the occipital bone.

stein (1986:fig. 2) for a pictoral represen-
tation of this model in the case of two-
dimensional data.

IMPLICATIONS OF THE MODEL

There are two important implications of
the model briefly outlined above.

First, the value of ¢ is constrained, per-
haps severely. In most landmark based, bi-
ological data sets, it is unlikely that two
landmarks would switch their relative po-
sitions within a biologically homogeneous
group. Proper representation of this reality
requires that the variability around the
landmarks be “considerably smaller” than
the distances between the landmarks (see
Bookstein, 1986:137). If one assumes that
this variability is constant throughout the
object, then e must be considerably smaller
than the smallest distance between any pair
of landmarks. If the biological object under
consideration is characterized by a few
landmarks that are close together and oth-
ers that are further spread apart, then the
value of ¢ is severely restricted by the dis-
tances between the more closely spaced
landmarks.

Second, assuming constancy of variabil-
ity around landmarks across a biological
form implies equal variances among bio-
logical regions within the forms. It follows
that, if we split the object in two (or more)

parts, the estimate of ¢ obtained by ana-
lyzing the sections separately should be
similar.

This concept can be examined in a way
that is similar to the technique of checking
the assumption of homoscedasticity in
regression analysis. In regression, the data
are split into two parts and ¢? is estimated
by S? and S% If S? and S3 are close, the
assumption of homoscedasticity may hold;
otherwise, it is suspect.

In the following section, we describe bi-
ological data sets which we use to examine
these implications more closely.

DESCRIPTION OF
THE BIOLOGICAL DATA

The first data set consists of two-dimen-
sional landmark coordinates digitized from
lateral radiographs of normal children and
those affected with two genetic syndromes,
Crouzon syndrome and Apert syndrome.
The Crouzon and Apert samples come from
patient records of the Center for Craniofa-
cial Anomalies, Chicago. None of the syn-
dromic individuals had undergone cranio-
facial surgery. The normal sample is from
the Bolton-Brush Growth Study (Broad-
bent et al., 1975). Details of original data
collection procedures can be found in
Richtsmeier (1985).

In this study, we use 10 landmarks (Ta-



62 SYSTEMATIC ZOOLOGY

voL. 39

FiGc. 1. Two-dimensional landmarks used in anal-
ysis of Crouzon, Apert and normal faces plotted on
a lateral projection of the human skull. See Table 1
for description of landmarks.

ble.1 and Fig. 1) located on lateral radio-
graphs of children at 4 and 13 years of age.
Sample sizes are as follows:

Age
Sample 4yr 13yr
Crouzon syndrome 5 .5
Apert syndrome 4 5
Normal 20 19

The other two data sets consist of three-
dimensional coordinates of landmark lo-
cations. Three-dimensional data were col-
lected by a single observer using the 3Space
digitizer (Polhemus Navigation, see Hil-
debolt and Vannier, 1989).

The first of the 3-D data sets consists of
coordinates of 18 homologous landmarks
located on the facial skeleton of a species
of Old World monkeys, Macaca fascicularis,
and a species of New World monkeys, Ce-
bus apella. All specimens considered are
male and come from the collections of the
National Museum of Natural History,
Smithsonian Institution. The specimens
were aged according to tooth eruption pat-
terns. Data from two developmental age
categories are used here: immature (having
only deciduous teeth); and adult (having

-

F1G. 2. Threée-dimensional landmarks used in
analysis of Cebus apella and Macaca fascicularis. Land-

marks are plotted on line drawings of C. apella show-
ing frontal (A), lateral (B), and inferior (C) views. See
Table 2 for description of landmarks.
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TABLE 2. Three-dimensional landmarks used in analysis of Cebus apella and Macaca fascicularis.

Landmark
number Landmark name and description
1 Point located midway along the arc measured along the neurocranial surface from bregma to
nasion.
2 Nasion. Point of intersection of the nasal bones with the frontal bone.
3 Nasale. Inferior-most point of intersection of the nasal bones.
4 Intradentale superior. The point is located on the alveolar border of the maxilla between the
central incisors.
5 Right junction of premaxilla and maxilla on alveolar surface.
6 Left junction of premaxilla and maxilla on alveolar surface.
7 Right junction of the frontal bone with the zygomatic bone on the orbital rim.
8 Left junction of the frontal bone with the zygomatic bone on the orbital rim.
9 Right zygomaxillare superior. Intersection of zygomatic bone and maxilla at the inferior orbital
rim.
10 Left zygomaxillare superior. Intersection of zygomatic bone and maxilla at the inferior orbital
rim. :
11 Right pterion posterior. Intersection of the frontal (in M. fascicularis, parietal in C. apella), sphe-
noid, and temporal bones.
12 Left pterion posterior. Intersection of the frontal (in M. fascicularis, parietal in C. apella), sphe-
noid, and temporal bones.
13 Right maxillary tuberosity. Intersection of the maxilla and the palatine bones at alveolar ridge.
14 Left maxillary tuberosity. Intersection of the maxilla and the palatine bones at alveolar ridge.
15 Intersection of the zygomatic, maxillary, and sphenoid bones at the pterygo-palatine fossa on
the right side.
16 Intersection of the zygomatic, maxillary, and sphenoid bones at the pterygo-palatine fossa on
the left side.
17 Posterior nasale spine. Posterior-most point of intersection of the right and left palatal shelves.
18 Junction of the vomer and sphenoid bone on the sphenoid body.

a complete permanent dentition). The
landmarks considered are defined in Fig-
ure 2 and Table 2, and sample sizes are as
follows:

Developmental age

category
Species Immature Adult
Macaca fascicularis 12 20
Cebus apella 12 20

The second of the 3-D data sets contains
landmark coordinates collected from the

craniofacial complex of New Zealand rab- -

bits (Oryctolagus cuniculus) raised in a lab-
oratory setting. All specimens were sacri-
ficed at 18 and one-half weeks of age. We
consider 18 landmarks (see Table 3, Fig. 3).
The sample consists of eight male individ-
uals.

STATISTICAL ANALYSIS

Each data set was analyzed using gen-
eralized procrustes analysis as described in

Goodall and Bose (1987). This technique
produces a consistent estimate of the mean
shape, X, and the standard deviation, e.

Initially, each form was split into two
sections such that there were no landmarks
common to both parts. We then estimated
the variability, ¢, for each section using the
generalized procrustes statistic, Gs. Since
the two sections have no landmarks in
common, it can be shown that under model
(1), the two Gg statistics are independent,
x? random variables with degrees of free-
dom d, and d,, respectively. The value of
d,(i =1, 2) is given by:

d, =[NK — %KK + 1) — 1L — 1)

where N, is the number of landmarks in
the it section and K is the dimension and
L is the sample size. See Goodall and Bose
(1987) for the corresponding derivations.
It follows that

_ Gi/d,

F
Gi/d,

has F,, ,, distribution
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TaBLE 3. Three-dimensional landmarks used in
analysis of Oryctolagus cuniculus. Landmark numbers
are not consecutive because this data represents a sub-
set of a larger data set.

Land-
mark

number Landmark name and description

1 Nasale. Intersection of distal end of nasal
bones at nasal suture.

2 Nasion. Intersection of proximal end of na-
sal bones at internasal and interfrontal
suture.

3 Most lateral edge of naso-frontal suture at
junction with incisive bone, right side.

4  Most lateral edge of naso-frontal suture at
junction with incisive bone, left side.

12 Lambda. Intersection of sagittal suture with
interparietal bone.

13 Right asterion. Most lateral projection of
interparietal bone at junction with pari-
etal bone, right side.

14  Left asterion. Most lateral projection of in-
terparietal bone at junction with parietal
bone, left side.

15  External occipital protuberance at midline.

16  Right edge of external occipital protuber-
ance.

17 Left edge of external occipital protuber-
ance.

18  Distal junction of naso-incisive suture,
right side.

19  Distal junction of naso-incisive suture, left
side.

where G denotes the Gg statistic corre-
sponding to the i** part.

Intuitively, we expect that variability for
landmarks that are located close together
is less than for landmarks that are farther
apart. We used this intuition to decide the
splitting of biological forms into two parts.

Results of our analysis for equality of
variances in all three samples are displayed
in Table 4. In each case, the hypothesis of
equality of variances is strongly rejected.

Following the suggestion of the anon-
ymous referee, we calculated the variabil-
ity of assorted subgroups of landmarks on
the skulls of Oryctolagus cuniculus. Land-
marks delimiting the intersection of the
nasal bones with the frontal bones (2, 3, 4)
are most variable, while landmarks at the
most anterior aspect of the nasal bones (1,
18, 19) and those on the occipital protu-
berance (12, 13, 14, 15, 16, 17) have similar

15 16

FiG. 3. Three-dimensional landmarks used in
analysis of Oryctolagus cuniculus projected onto a two-
dimensional view of the rabbit skull from above. See
Table 3 for description of landmarks.

but low variances, 0.03439 and 0.03491, re-
spectively.

We might expect those landmarks that
are most centrally located (2, 3, 4 in this
example) to have the lowest variance due
to the constraints of a rotational fitting pro-
cedure. However, our results are contrary
to this expectation and underscore the im-
portance of biological constraints (e.g., de-
velopmental, structural, functional) on an-
atomical design.

Our proposed biological reasons for the
low variances determined for the most an-
terior and the most posterior groups of
landmarks differ between groups. The more
anterior group of landmarks (1, 18, 19) de-
fines the anterior border of the paired nasal
bones. We feel that the variance is com-
paratively low here because the location of
these landmarks are dependent on a single
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TABLE 4. Analysis for equality of variances in three data sets.

Data Set I
Landmarks 6,7, 8 Landmarks 1,2, 3,4,5,9, 10 .
F-Ratio
4 af o df &/3=F
(1) Normal children
Age 4 0.04676 38 0.52893 190 127.95
Age 13 0.05849 36 0.19260 180 10.84
(2) Apert Syndrome
Age 4 0.05125 6 0.34077 30 44.21
Age 13 0.06411 8 0.31433 40 24.04
(3) Crouzon Syndrome
Age 4 0.06181 8 0.26144 40 17.89
Age 13 0.09326 8 0.36119 40 15.00
Data Set II
Landmarks 4,5, 6 Landmarks 1-3,7-18 .
F-Ratio
) af P af a/g=F
M. fascicularis
Age 1l 0.04395 22 0.10428 418 5.63
Age5 0.08784 38 0.13581 722 2.39
C apella
Age 1l 0.05692 22 0.08466 418 221
Age5 0.07196 38 0.12079 722 2.82
Data Set III .
Landmarks 12-17 Landmarks 1-4, 18, 19 E-Ratio
4 df S df g/g=F
Oryctolagus cuniculus
0.03491 77 0.06767 77 3.76

pair of bones and are not affected or con-
strained by contact with other osseous ele-
ments. The more posterior group of land-
marks (12, 13, 14, 15, 16, 17) outlines an
area of nuchal muscle attachment. Like the
landmarks that describe the most anterior
portion of the nasal bones, landmarks 15,
16, and 17 lie on a single bone. Moreover,
the morphology required for effective
muscle attachment in this region may limit
the amount of variation that is possible be-
fore the design becomes functionally un-
sound.

The landmarks located centrally in our
biological configuration (2, 3, 4) show the
greatest amount of variation in location.
We believe that this simply reflects dynam-
ics of sutural biology. Landmarks 2, 3, and
4.are-situated at the intersection of either
three or four independent bones. Because
sutural morphology isdependent upon the
approximation of adjacent bony bound-

aries, the variability of sutural intersec-
tions (in our example, landmark locations)
will increase with the number of bones
involved in the formation of this bound-
ary. Since the formation of particular ar-
ticulating bones may be dependent upon
the growth of independent soft tissue
functioning matrices (sensu Moss, 1973),
we can expect a great degree of variability
for landmarks that mark the intersection

.of several bony elements. This variability

may be greater or less depending upon
which bony structures are involved and
upon which soft tissue components their
growth patterns depend.

The second part of the analysis considers
only the first data set consisting of 2-D
landmark data from the human craniofa-
cial complex. In Table 5 we compare the
estimate of ¢ as obtained from GPA of the
complete craniofacial complex with the
minimum distance between any pair of
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TABLE5. Comparison of ¢ with the minimum dis-
tance between any pair of landmarks.

Minimum

Data set & distance*
Crouzon Syndrome—Age 4 0.32946 0.62
Apert Syndrome—Age 4 0.30876 0.63
Normal children—Age 4 0.43546 0.54
* The minimum distance corresponds to the minimum of all p

10 landmarks in the

g ge form X as obtained by
GPA after rotation and scaling.

landmarks. It is clear from Table 5 that the
calculated values of e could easily (and real-
istically) cause any of the closely spaced
landmarks to switch their positions. How-
ever, this is biologically impossible. The
minimal distance was consistently found
among landmarks 6, 7 and 8 which define
the limits of the pituitary fossa.

We have demonstrated that the assump-
tion of homoscedasticity of variances is un-
realistic in three biological situations. There
may be situations where it holds true but,
for general applications, this assumption
is both constraining and unrealistic.

ALTERNATIVE MODELS

Since we have demonstrated the inade-
quacy of the perturbation model with vari-
ance-covariance matrix ¢€’I, the problem re-
mains to develop a realistic and practical
model for the analysis of morphometric
data, in particular, landmark data. Below
we discuss two alternative models that have
been proposed in the literature. Finally, we
specify the key characteristics required of
a proper statistical model for landmark data.

Goodall and Bose Model .

Realizing the need for a more general

variance-covariance matrix for the pertur-
bation distribution, Goodall and Bose (1987)
suggest the following model for the per-
turbations E;:

E; ~ MN(O, 2y X Zx)

where MN denotes matrix valued normal
distribution, Zy is a positive definite, sym-
metric N x N matrix and I, is another
positive definite, symmetric K x K matrix;
X denotes the Kronecker product. Z X 2

is the variance-covariance matrix of E, and
O is the mean. There are two major prob-
lems associated with this model.

First, the number of parameters is ex-
tremely large, namely

NN +1) KK+ 1)
2 2 '

Clearly, to estimate the parameters reason-
ably well one would need fairly large sam-
ples. Whether such large samples are avail-
able or not depends on the particular study.
However, sample size is commonly limited
in biological studies and this model will
therefore be difficult to use. The use of
parametric models for 2y and Z¢ might re-
duce the number of parameters but it is not
clear which parametric models are realis-
tic.
. Second, and more critically, even in cases
where sample size is sufficient, the vari-
ance-covariance matrix, 2, cannot be con-
sistently estimated using landmark data.
Let us consider the simplest situation
where there is no scaling or rotation. Fol-
lowing the notation of the previous sec-
tion, let

X=X+ E + 1t

Let us also assume that 2 is identity matrix

Ix. Goodall (1989) assumes such a structure.

(Note this assumption is biologically un-

realistic since it says that landmarks vary

independently of each other along differ-

ent axes but are correlated along a fixed -
axis. Notwithstanding, we will allow it for

the sake of simplicity.) Then

X, ~ MN(X + 14t Sy X L). (%)

Note that since each observation gets shift-
ed by an unknown and different transla-
tion parameter t/, the number of unknown
parameters, namely, (X, t,, Zy), goes to in-
finity at the same rate as the number of
observations. This phenomenon belongs
to the class of problems dealing with in-
finitely many nuisance parameters. (See
particularly Example 2 on page 4 of Ney-
man and Scott, 1948.) Our aim is to estimate
X and Zy; t/'s are nuisance parameters.

In the univariate case the situation can



1990

STATISTICAL MODELS IN MORPHOMETRICS 67

be stated as follows: X;’s are independent
normal random variables with mean u X
t; and variance ¢ and we want to estimate
u and ¢? consistently: t,’s are nuisance pa-
rameters.

It is well known that in this situation ¢
is not estimable in general. One can esti-
mate o2 if there are at least two observa-
tions with the same nuisance parameter or
if t,s are themselves random variables hav-
ing common distribution. Both these sit-
uations are unrealistic in any biologically
based morphological studies. Hence, un-
der the model described in (*), 2 is non-
estimable.

In the following exercise, we show that
under some reasonable conditions, X, the
mean form, can be estimated consistently
but the parameter of interest Z cannot be
estimated. Consider the model in (*). As-
sume that the average form X is such that
the columns sum to zero: that is, the av-
erage form is centered. Let us transform
the observations X;’s such that they are
centered: that is, the columns sum to zero.
Then these transformed observations, X*’s,
have the following distribution

¥~ MN(X, 2% x L)

where X is the mean and Z¥; is the variance-
covariance matrix. Note also that X}¥’s are
now independent and also identically dis-
tributed with the average form X as the
mean. It is obvious that X*, the average
of X{¥’s, estimates X — the average form
consistently. It is also clear that the sample
variance-covariance matrix can be used to
estimate Z¥. However, note that =¥ is not
the same as Zy. 2¥ is a singular matrix of
rank (N — 1), one less than that of 2. This
follows because centering of the observa-
tions imposes a linear constraint on the
entries in the columns of X¥, reducing the
rank by one. By using X*'s and X* one can
estimate 2¥ consistently, but Z, the pa-
rameter of interest, cannot be estimated
consistently. Our point becomes more ob-
vious in the univariate case:

X; ~ N(u + t, 0?), o2 > 0.

In this case, a centered form is equivalent
to having u equal to 0. One centers the

observation X; by subtracting X; from it,
(i.e., X*) is identically equal to zero. Thus,
equal to zero for all i. The mean of X¥'s

(i.e., X*) is 1dent1cally equal to zero. Thus,
the mean u is estimated correctly to be 0.
However, since the variance of X¥’s is ex-
actly zero (they are degenerate at zero), the
variance of X¥’s does not estimate ¢2 (>0)
correctly. In fact, 2 is non-estimable! Note
X¥'s are in the space of rank zero, one less
than that of X,’s.

The conclusion of this discussion is that
the general model proposed in Goodall and
Bose (1987) is unrealistic since the param-
eters of interest are non-estimable.

Mosimann’s Models

Mosimann (1970, 1975a, b) suggests the
use of linear distances to study populations
of forms. He develops characterization
theorems for lognormal and some other
positive random variables. Bookstein
(1978) and Bookstein et al. (1985) criticize
Mosimann’s approach as being non-geo-
metric and therefore inadequate because
Mosimann does not consider distances be-
tween homologous landmarks. In this sec-
tion, we critique Mosimann on other
grounds, regardless of whether the dis-
tances considered are landmark based or
not.

First, Mosimann does not offer any bi-
ologically sensible statistical mechanism
(such as the perturbation mechanism de-
scribed earlier) to account for the landmark
distances having a Lognormal, Gamma or
Dirichlet distribution. These distributions
are chosen more for statistical convenience
than biological reality. Second, Mosimann
does not clearly prescribe how many dis-
tances should be taken to preserve all the
information about the form of the object.
Moreover, he does not state how these dis-
tances should be stochastically related.
Clearly, they cannot be independent of
each other. But how do we characterize the
variance-covariance matrix? What is the
rank of this variance-covariance matrix?
Unless these questions are answered sat-
isfactorily, it is not clear why these distri-
butions should model the vector of linear
distances realistically.
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TOWARDS A REASONABLE STATISTICAL
MODEL OF BIOLOGICAL FORM

An essential characteristic of a statistical
model for populations of biological objects
is that every observation generated by the
statistical model should at least correspond
to an object in the appropriate dimension,
either two or three. It is clear that the per-
turbation model proposed by Bookstein
satisfies this requirement. The following
discussion is applicable when one uses lin-
ear distances between biological land-
marks.

In Lele (1989) it is shown that to repre-
sent an object with N landmarks one can
use N(N — 1)/2 distances. Only certain
proper subsets of these distances are suf-
ficient. Moreover, it is also shown that the
space of all two-dimensional objects rep-
resented by N landmarks corresponds to
the space of all N X N symmetric positive
semidefinite matrices of rank two. For
three-dimensional objects the rank of the
matrix is necessarily three. It is clear that
the statistical model for the (N X N) matrix
of all linear distances (which represents
the form of the object as described by N
landmarks completely) take values in the
space of all N X N positive semidefinite
matrices of proper rank, either 2 or 3.

Note that the range of the statistical
models proposed by Mosimann is bigger
than the allowed range. Thus, these models
can generate objects which exist in four or
higher dimensions; in fact, they may not
necessarily correspond to any geometrical
object at all! For example, if one uses a
three-variate lognormal distribution with
mean vector (1, 1, 1), it is possible to get
an observation (1.5, 0.8, 0.6). This obser-
vation vector does not correspond to a tri-
angle on a plane even though the mean
vector does! We feel that statistical proce-
dures developed using such models should
be approached with care.

Another characteristic of a good statis-
tical model is that the parameters be esti-
mable. We have shown that for perturba-
tion models some of the parameters of
interest (such as variance-covariance ma-
trix) may not be estimable due to the ex-

istence of nuisance parameters corre-
sponding to translation. It is not clear how
rotation and scaling affect the estimability,
and hence the statistical testing procedures
based on these.

DISCUSSION

We have illustrated that the perturba-
tion models with variance-covariance ma-
trix €I are unrealistic on biological grounds,
whereas the general model with variance-
covariance matrix (Zy X Ig) or (Zy X Zg)
leads to non-estimability of the parameter
of interest, namely, Z\. Models for linear
distances such as Lognormal, Gamma or
similar positive valued random variables
do not necessarily generate observations
which correspond to a geometrical object
in proper dimensions, either 2 or 3. Our
work underscores the need for statistical
methods that are less model dependent
than the existing ones.

We stress that data used in this study
were collected for other purposes. They
were not chosen as counter examples, nor
do they represent exceptional biological
data sets. The actual morphology of the
object dictates the availability and location
of landmarks. For example, due to the mor-
phology of osseous elements of the skull,
there are particular regions that offer more
landmarks to the researcher. The cranial
base is a region where a number of separate
bones come together to form a functioning
unit which supports the brain and trans-
mits major neurovascular bundles. This re-
gion offers a multitude of landmarks and,
because of the comparatively compact size
of the region, the landmarks are closely
spaced. The neurocranium, on the other
hand, is characterized by a few, large bony
elements with smooth surfaces and few fo-
ramina. Since few landmarks are available
to describe this comparatively large bio-
logical region, the distribution of neuro-
cranial landmarks will be diffuse.

Variability of a landmark not only de-
pends on its position relative to its neigh-
bors but also on the inherent structure of
the landmark. For example, we have found
landmarks based on suture intersections in
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the pterion region (i.e., various intersec-
tions of frontal, sphenoidal, zygomatic and
parietal bones) to be highly variable
(Richtsmeier and Danahey, unpublished
data), while landmarks that mark the in-
tersection of two sutures at a border (e.g.,
nasale, intradentale superior) show rela-
tively little variability. It is interesting to
consider the evolutionary implications of
the pterion region in conjunction with its
predisposition to high variability in loca-
tion, but these ideas await further analyses.
When comparing forms which differ as the
result of a biological process (e.g., evolu-
tion, growth, teratological factors), we sug-
gest that the biologist might offer some
expectations regarding the degree of local
variability based on knowledge of the bi-
ological forms under study and the partic-
ular process responsible for change. Incor-
porating this information into statistical
models has not been attempted, but could
prove useful.

Biology has presented us with a number
of constraints on the description of form
by landmark data based solely on archi-
tecture. It seems unwise to place additional
constraints on analyses that are based on
statistical models.

ACKNOWLEDGMENTS

Use of skeletal collections of the NMNH was kindly
allowed by Dr. Richard Thorington, Division of Mam-
mals, Smithsonian Institution. We thank Tom Broad
and Steve Danahey for assistance in data collection.
Rabbits used in this study were part of a larger study
under the direction of Dr. Craig Dufresne, The Johns
Hopkins University. This work was supported in part
by a Basil O’Connor grant from the March of Dimes
Birth Defects Foundation, a biomedical research grant
from the Whitaker Foundation and BRSG Grant No.
2-507-RR05445-27.

We are grateful to the Associate Editor, Professor
Michael Douglas, for his kind support and encour-
agement. We acknowledge Fred Bookstein and the
other anonymous referee for their comments.

REFERENCES

BOOKSTEIN, F. L. 1978. The measurement of biolog-
ical shape and shape change. Lecture Notes in
Biomathematics 24. Springer, Berlin.

BOOKSTEIN, F. L. 1984. A statistical method for bio-

logical shape comparisons. J. Theor. Biol., 107:475-
520.

BoOKsTEIN, F. L. 1986. Size and shape spaces for
landmark data in two dimensions. Stat. Sci., 1(2):
181-242.

BOOKSTEIN, F. L. 1989a. Discussion of Kendall’s pa-
per. Statist. Sci., 4:99-105.

BOOKSTEIN, F. L. 1989b. Principal warps: Thin plate
splines and the decomposition of deformations. IEE
Trans. Pattern Anal. Machine Intelligence, 11, 567~
585.

BOOKSTEIN, F., B. CHERNOFF, R. ELDER, J. HUMPHRIES,
G. SMITH, AND R. STRAUSS. 1985. Morphometrics
in evolutionary biology. Special Publication 15, The
Academy of Natural Sciences of Philadelphia.

BROADBENT, B. H., BROADBENT, B. H. JrR.,, AND W. H.
GOLDEN. 1975. Bolton standards of dentofacial de-
velopmental growth. C. V. Mosby, St. Louis.

GOODALL, C., AND A. Bose. 1987. Models and pro-
crustes methods for the analysis of shape differ-
ences. Proc. 19th Symp. Interface between Com-
puter Science and Statistics.

GoopALL, C. 1989. WLS estimators and tests for shape
differences in landmark data. Technical Report,
Program in Statistics and Operations Research,
Princeton University, Princeton, New Jersey.

HiLDEBOLT, C. F., AND M. W. VANNIER. 1988. Three-
dimensional measurement accuracy of skull surface
landmarks. Amer. J. Phys. Anthropol., 76:497-503.

LELE, S.R. 1989. Some comments on coordinate-free
and scale invariant methods in morphometrics.
Submitted for publication.

MosIMANN, J. E. 1970. Size allometry: Size and shape
variables with characterisations of the lognormal
and generalized gamma distributions. J. Amer. Sta-
tist. Assoc., 65:930-978.

MOSIMANN, J. E. 1975a. Statistical problems of size
and shape. I. Biological applications and basic theo-
rems. Pages 187-217 in Statistical distributions in
scientific work. Volume 2 (G. P. Patil et al., eds.).
D. Reidel Publishing Company, Holland.

MOosIMANN, J. E. 1975b. Statistical problems of size
and shape. II. Characterisations of the lognormal,
gamma and dirichlet distributions. Pages 219-239
in Statistical distributions in scientific work. Vol-
ume 2 (G. P. Patil et al., eds.). D. Reidel Publishing
Company, Holland.

Moss, M. L. 1973. A functional cranial analysis of
primate craniofacial growth. Pages 198-208 in Symp.
IVth Int. Congr. Primat. Volume 3: Craniofacial bi-
ology of primates.

NEYMAN, J., AND E. L. ScoTT. 1948. Consistent esti-
mates based on partially consistent observations.
Econometrica, 16:1-32.

RICHTSMEIER, J. T. 1985. A study of normal and
pathological craniofacial morphology and growth
using finite element methods. Ph.D. dissertation,
Northwestern University, Evanston, Illinois.

Received 29 June 1989; accepted 3 January 1990



