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 Procrustes Methods in the Statistical Analysis of Shape

 By COLIN GOODALLt

 Princeton University, USA

 [Read before The Royal Statistical Society at a meeting organized by the Research Section
 on Wednesday, October 17th, 1990, Dr F. Critchley in the Chair]

 SUMMARY

 Two geometrical figures, X and Y, in RK, each consisting of N landmark points, have the
 same shape if they differ by at most a rotation, a translation and isotropic scaling. This
 paper presents a model-based Procrustes approach to analysing sets of shapes. With few
 exceptions, the metric geometry of shape spaces is quite complicated. We develop a basic
 understanding through the familiar QR and singular value decompositions of multivariate
 analysis. The strategy underlying the use of Procrustes methods is to work directly with
 the Nx K co-ordinate matrix, while allowing for an arbitrary similarity transformation at
 all stages of model formulation, estimation and inference. A Gaussian model for landmark
 data is defined for a single population and generalized to two-sample, analysis-of-variance
 and regression models. Maximum likelihood estimation is by least squares superimposition
 of the figures; we describe generalizations of Procrustes techniques to allow non-isotropic
 errors at and between landmarks. Inference is based on an Nx K linear multivariate
 Procrustes statistic that, in a double-rotated co-ordinate system, is a simple but singular
 linear transformation of the errors at landmarks. However, the superimposition metric used
 for fitting, and the model metric, or covariance, used for testing, may not coincide. Estimates
 of means are consistent for many reasonable choices of superimposition metric. The estimates
 are efficient (maximum likelihood estimates) when the metrics coincide. F-ratio and
 Hotelling's T2-tests for shape differences in one- and two-sample data are derived from
 the distribution of the Procrustes statistic. The techniques are applied to the shapes associated
 with hydrocephaly and nutritional differences in young rats.

 Keywords: GAUSSIAN MODELS; LANDMARKS; QR DECOMPOSITION; ROTATION; SHAPE SPACE;
 WEIGHTED PROCRUSTES ANALYSIS

 1. INTRODUCTION

 1. 1. Preliminaries
 The shape of a geometrical figure is commonly understood to refer to those geometrical
 attributes that remain unchanged when the figure is translated, rotated and scaled.
 A statistical approach to analysing shape is developed in this paper that applies when
 each geometrical figure in RK consists of N labelled points and thus is represented
 by an Nx K matrix X. Such data arise often in a biological or medical setting, when
 corresponding labelled points are called landmarks (Bookstein, 1978). Other areas
 in which landmark data arise include archaeology, astronomy, cartography,
 manufacturing, geology and geophysics. Thus in some instances landmarks may refer
 to the same physical markers identifiable in more than one map, satellite image,

 tAddress for correspondence: Program in Statistics and Operations Research, E-220 Engineering Quadrangle,
 Princeton University, Princeton, NJ 08544, USA.
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 Fig. 1. Lateral section of the rat skull, showing the neural skull (left-hand half of the figure), the
 facial skull (right-hand half of the figure) and 20 homologous landmarks, in part at the sutures between
 bones

 X-ray, etc. In instances of biological homology, landmarks are uniquely defined
 locations, most often in the skeleton (Fig. 1), that are identifiable across individuals
 and, in interspecies comparisons, linked by a presumed evolutionary pathway. At
 its most general, a set of landmarks is a set of labelled points, found in at least two
 figures, whose relative positions in the two or more figures has some scientific,
 educational or artistic interest to us. This abstraction allows shape theory to stand
 separate from issues of interpretation.

 Two geometrical figures X: Nx K and X ': Nx K are said to be congruent if they
 differ by a rigid body transformation (Lord and Wilson, 1984). We use form, or size-
 and-shape, for an equivalence class of congruent geometrical figures and loosely say
 that the forms X and X ' are determined to within a rigid body transformation, or
 say that the form is the figure with location and orientation removed.

 Definition. Say that two figures X: Nx K and X': Nx K have the same form if

 they are related by a rigid body transformation.

 x =xr + 1NyT (1.1)

 where r': KxK is a rotation. IIr I = 1, 1N is the N-vector of ones and y: Kx 1 is a
 translation. The translation-rotation pair (y, 17) is a transformation from the special
 Euclidean group acting on RK. We must compare the forms of X and X ', instead
 of the figures X and X ', when there is no properly defined common co-ordinate system.

 Shape (Mosimann, 1970; Bookstein, 1984; Kendall, 1984, 1989) is form with size
 removed. A shape is an equivalence class of geometrical figures modulo the special
 similarity transformations (no reflection). Write [X] for the shape of X.

 Definition. Say that two figures X: Nx K and X': Nx K have the same shape,

 written [X] = [X' ], if they are related by a special similarity transformation,

 x t=fXr + 1NSYT, (1 .2)

 where I': Kx K, II rI = 1, 'y: Kx 1, and ai >0O is a scalar. The triple ('y, fi, 17) specifies
 the translation, scale and rotation components of the similarity transformation from
 Xto X'.

 The focus of this paper is statistical methods for the analysis of shape. The analysis
 of size-and-shape is closely related. In the remainder of this section we develop both
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 1991] PROCRUSTES METHODS IN SHAPE ANALYSIS 287

 notions, before specializing to shape (although the Procrustes methodology developed
 subsequently adapts very easily to size-and-shape analysis).

 Kendall (1984, 1989) and Carne (1990) discuss the topological and metrical geometry
 of spaces for forms and shapes. The components of the similarity transformation,
 translation, scale and rotation, are removed in three steps. First each figure Xis centred,
 e.g. by multiplying X on the left by an (N- 1) x N Helmert matrix H. The matrix
 H has orthonormal rows, each orthogonal to the unit vector IN/IN. The rows of
 the matrix Y= HX are the co-ordinates of derived landmarks. We say that the original
 figures X are in figure space, ?NRK_ RNK and the matrices of derived landmarks
 are in preform space, ?N- iRK _ R(N- 1)K. Given any probability model for X, the
 statistical properties of Y are easily deduced. In particular, when Xis spherical Gaussian
 then so is Y. We need consider only scaling and rotations of Y, and can modify
 transformations (1.1) and (1.2) accordingly.

 The next two steps are to quotient out scale and orientation, in either order (see
 also Goodall and Mardia (1990a, b)). As squared size statistic, r2, we use the sum
 of squared deviations of landmarks about their centroid, or the sum of squares of
 the derived landmarks. Let X= (IN- lNlN/N)X be the centred figure. Then

 r= fIXff =jtr(XTX)= fY11 =4tr(YTY). (1.3)
 To remove scale and orientation we may decompose Y uniquely as

 Y=rZ=rWRrR= TRrR (1.4)
 =rZ=rWr= TIP

 where rR E O(K) is an orthogonal matrix with 1 rR I = ? 1, IF E SO(K) is a special
 orthogonal matrix with 1 r= 1 and WR, TR, W and T are lower triangular matrices
 with non-negative diagonal elements, apart from WKK and TKK which may be

 negative, positive or zero. 11 TR 11 = 11 Tf/ = r and 1/ Z 11 = 11 WR 11 = 11 Wll = 1, and
 [X] = [ Y] = [ T] = [ W].

 The decomposition Y= Th17R = Tr is the polar, or QR, decomposition of Y, and
 TR is said to contain the rectangular co-ordinates of Y. The two alternatives occur
 in computation according to whether Householder reflections or only Givens rotations
 are used in the QR algorithm (Golub and Van Loan, 1983). In multivariate analysis
 the orthogonal group is used. In shape theory the distinction is important: either
 reflection (denoted by the superscript R) is allowed, or it is not. We are led to two
 additional definitions, parallel to definitions 1 and 2, for what may be called reflection
 form (reflection size-and-shape) and reflection shape.

 Expressions (1.4) provide co-ordinates for shape and form, and reflection shape
 and reflection form. The structural non-zeros of TR are reflection size-and-shape co-
 ordinates. The NK - K(K + 1)/2 structural non-zeros of the form matrix T are size-
 and-shape co-ordinates, in the space of forms SEKj (Kendall's notation).
 Furthermore Z is a point on the sphere of preshapes PEK4 S(N 1)K 1. The
 structural non-zeros of the shape matrix W are direction co-ordinates for
 shape, topologically in Sm, where m =NK-K(K+ 1)/2 - 1. We may then introduce
 m generalized polar shape co-ordinates. For the shapes of planar triangles

 E3-S2(1)1
 ( Cos01 0

 t sin 01 cos 02 sin 01 sin 02 j (1.5)
 and (201, 02) are the usual spherical polar co-ordinates, colatitude and longitude.
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 The space of reflection shapes (reflection forms) involves a 2: 1 identification of
 shape (form) space. We introduce the notation RP I and SR E I for reflection shape
 space and reflection form space respectively. Since a rotation followed by reflection
 in RK is a rotation when RK is embedded in RK+ 1, each reflection space is the
 subspace of E+ or SEK1 containing rank deficient shapes.

 Kendall (1984, 1989), Carne (1990) and Le (1990a) characterize the geometry of
 shape space both topologically and metrically. Generalizing the result that shape space
 for planar triangles is the sphere, E I= S2(1), with radius 2, Kendall (1984) shows
 that shape space for more complicated planar configurations is complex projective
 space E I CPN-2(4), with so-called sectional curvature 4. Kendall and Le (1990)
 characterize the geometry of EN with N and K arbitrary.

 The Euclidean geometry of figure space induces Euclidean geometry in preform
 space (H is linear), and spherical geometry in preshape space pEN = SN S(N- 1)K.
 The preshape sphere is partitioned into fibres by the rotation group SO(K). Two
 preshapes on a given fibre differ by a rotation. The fibre through Z is [Zr: 17 E SO(K)},
 and the fibre is the orbit of Z under the action of SO(K). Fibres in SN correspond
 one to one with points in shape space EN. The squared Procrustes distance between
 [ Z1] and [ Z2], d2( [Z1], [Z2] ), is the smallest Euclidean distance between any
 pair of preshapes on the corresponding fibres,

 d2= min IIZI-Z2]1PJ2=2[1- max (ZTZ2I7)J. (1.6) rPcso(K) rPESO (K)I

 Some researchers (Kendall, Carne) prefer to work with Riemannian or geodesic distance
 Ol, which on the sphere is just the great circle distance, and is related to Euclidean
 distance by d = 2 sin(Q/2) (in both preshape and shape space). The quotient mapping
 from S[ to EN is called a Riemannian submersion, because it preserves Riemannian
 distances.

 These formulae and discussion reveal the parallels between spherical statistics and
 shape theory. Shape theory involves an additional layer of complication, through
 the rotations, and preshape space SN has more structure (e.g. the fibres) than the
 sphere S(N- 1)K- 1. Spherical statistics and Procrustes methods in shape theory (and
 preshape theory) both use the chord distance d as a convenient and pervasive alternative
 to Riemannian distance. For planar triangles equation (1.6) can be avoided, since
 [Z] is a point on S2(4) and d is the chord distance. This approach has been
 developed by several researchers, including Kendall (1985, 1989), Mardia (1989a) and
 Goodall et al. (1990).

 Recalling the QR decomposition (1.4), the distance between any two shape matrices
 W1 and W2, or form matrices T1 and T2, is not a simple function of (W1, W2) or
 (T1, T2) but is instead obtained by replacing the Zs by Ws or Ts in equation (1.6)
 and finding the minimizing r. Thus equation (1.6) provides a natural metric for lower
 triangular matrices. The theory of size-and-shape (almost) addresses the geometrical
 and statistical properties of the lower triangular matrix of the QR decomposition.
 The theory of shape (almost) addresses the properties of the lower triangular
 matrix scaled to unit size. The niggledy 'almost' is a consequence of excluding
 reflections and is (hopefully) usually unimportant in practice. Shape theory appears
 to be the first systematic investigation of matrices modulo rotations, instead of modulo
 orthogonal transformations.
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 1.2. Euclidean Co-ordinates for Shapes
 Let x1, x2,.. ., E C be the complex co-ordinates of the landmarks of a planar

 figure, K=2. Let u = (ui), where

 Uj= Xi+2- XI i 1 .. N-2. (1.7) x?2 -XI

 The ui comprise 2(N-2) shape co-ordinates, called Bookstein co-ordinates on
 account of Bookstein (1984, 1986, 1991). The Euclidean geometry of u E R2(N-2) is
 a useful approximation to the metric geometry Of -CPN-2(4), allowing
 concentrated shape data to be analysed as an approximately multivariate Gaussian
 sample. For triangles, N= 3, Bookstein co-ordinates are a stereographic projection
 of the spherical co-ordinates. Bookstein also develops a distinct global hyperbolic
 geometry for u (cf. Small (1988)). Numerous researchers use the ui (Bookstein and
 Reyment, 1989; Kendall, 1984, 1985; Goodall, 1990a; Mardia and Dryden, 1989a, b;
 Mardia, 1989a, b; Goodall et al., 1990; Small, 1984; Watson, 1986).

 Kendall's (1984) co-ordinates are the ratios u? =yi 1/yi of the complex co-
 ordinates yi of the derived landmarks Y= HX. The u* comprise the rectangular part
 of the QR decomposition of Y when scale is IIY 11, so the first row of the shape
 matrix .W can be ignored. Analogously, the ui comprise the rectangular part of the
 QR decomposition when the Helmert matrix H is replaced by a 'difference' matrix,

 (-1N1IIN_ 1), and scale is 11x2-x, 11.
 Both Bookstein and Kendall co-ordinates generalize to arbitrary dimension by this

 approach (Goodall and Mardia, 1990a). The use of complex co-ordinates for landmarks
 of planar figures is an elegant alternative (Kendall, 1984; Kent, 1990; Bookstein, 1991)
 to the more general matrix methods used here.

 1.3. Overview
 The organization of the paper is as follows. A summary of the notation used in

 subsequent sections is given in Table 1. Procrustes estimation of the mean shape,
 and shape differences, is discussed in Sections 2 and 3 from a geometrical standpoint.
 Section 4 introduces the singular value decomposition (SVD) and isometries of shape
 space. Gaussian models for landmark data are defined in Section 5 for general error
 covariances, and maximum likelihood estimation is discussed. The one- and two-sample
 models are given as examples in Section 6. Conventional unweighted Procrustes
 algorithms are extended in Section 7 (ordinary) and Section 8 (generalized) to the
 weighted case. However, the metric used for estimation need not coincide with the
 model covariance (Section 9). Iterative algorithms leading to maximum likelihood
 estimates (MLEs) for the one- and two-sample examples are described in Section 10.
 First-order inference is developed in Section 11 for the isotropic case and interpreted
 geometrically in Section 12. Section 13 describes inference in the weighted case.
 Hypothesis tests for the one- and two-sample models are given in Section 14, extended
 to one-way analysis of variance (ANOVA), and illustrated with an example of the
 association of shape with nutrition. Shape differences are described by an affine
 component in Section 15. Lastly Section 16 notes some extensions of the models to
 longitudinal and regression data, and provides a brief overview of the Procrustes
 approach contrasted with other techniques.
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 TABLE 1

 Notation

 N Number of landmarks

 K Dimension of space

 m Shape dimension, m =NK- 'K(K+ 1) - 1
 L Number of figures

 M Number of samples

 X, Y Figures

 Z Preshape

 [X] Shape of X

 XI ' X after superimposition

 TX Procrustes tangent space at X
 SK Shape space
 SENK Size-and-shape space
 PE N Preshape space
 RE Reflection shape space
 SREN Reflection size-and-shape space
 ly K-vector for translation

 0 Scale factor
 r K x K rotation matrix

 ('y, 3, F ) Similarity transformation
 (co, a, Q2) Inverse similarity transformation
 [ p4 ] Population mean shape

 Figure with shape [ A ]
 E Gaussian displacement, e.g. from t

 R Displacement E after superimposition

 P E in double-rotated co-ordinates

 S R in double-rotated co-ordinates, P after superimposition

 G or GSy, r Generalized Procrustes sum of squares for L figures superimposing by similarity transformations
 G,y, r, Gr Generalized Procrustes sum of squares superimposing by Euclidean transformations or by rotation only

 Gy3 g; r Generalized Procrustes sum of squares for L figures with standardized location and scale, superimposing
 using rotation only

 G* Ordinary Procrustes sum of squares between 2 figures; same usage of subscripts as for G
 EM Model metric or covariance (sometimes just E)
 Es Superimposition metric (sometimes just E)

 2. PROCRUSTES ESTIMATION OF MEAN SHAPE

 We turn now to the geometrical basis of Procrustes methodology, and its relationship
 to the geometry of shape spaces. Two basic statistical quantities, means and residuals,
 are defined geometrically for samples of shapes in this section and Section 3. Related
 distribution theory is deferred to Section 5. The discussion can be readily modified
 to treat size-and-shape, reflection shape and reflection size-and-shape.

 Geometrically, a mean shape is near the centre of the empirical distribution in shape
 space. For preshapes Z1,. ._., ZL, a Procrustes mean shape is [ Z ], where we choose
 rotations ri and preshape Z simultaneously to minimize, by generalized Procrustes
 analysis (GPA) (Gower, 1975),

 L

 EIziriF-Z 12. (2.1)
 i=l1
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 [Zi] [Z] [Zi]

 zlr ~ ~ -;

 Fig. 2. Schematic diagram of preshape space: the fibres (full lines) of the shapes [Z1],
 [ZiI, . . . are shown intersecting the manifold of lower triangular matrices at preshapes Wi; the
 mean W is the preshape on the manifold with the smallest sum of squared distances to these fibres;

 the closest preshapes to W are at Zi'= wiri (joined to W by bold broken lines); W is on the fibre of
 the mean shape [ Z ]; the entire construction may be rotated by an arbitrary r (broken lines)

 For uniqueness we may choose Zi = Wi and Z = W, lower triangular matrices. Fig. 2
 shows a section through preshape space that contains the fibrest wiri, ri E SO JJ
 and a (continuous) manifold through the lower triangular matrices near W.
 We use a prime to denote the closest preshape to Z on each fibre, i.e. Zi'=
 Ziri = Zi' (Z1, Z, r). (Z expresses the dependence of Zi' both on the Zi and on the
 choice of Z on its fibre.) W minimizes expression (2. 1) with Z in the manifold; a
 parallel diagram is obtained when the Zi' and W are each rotated by a fixed
 rotation F.

 The minimum of expression (2.1) is the sum of squared Procrustes distances between

 each Zi and Z. The Procrustes sum of squares between two figures XI and X2 is

 G ,sr(X1, X2)= minm 1X2-0X1r-1NyT11 2 (2.2) 'f I -y' 0~~, r3,F

 The minimum is found by ordinary Procrustes analysis (OPA). The subscript -, j3, r
 indicates that equation (2.2) is the least squares distance between X2 and the orbit
 of X1 under the similarity group. Other subscripts are possible, and a semicolon,
 where present, is used to separate the components that have been standardized in
 the decomposition in Section 1 from those that are found by minimization. With these
 extensions, the squared Procrustes distance (1.6) is
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 We reserve the term squared Procrustes distance for G, (; F and we use Procrustes
 sum of squares more generally. As G* (3 r (XI, X2) & G(3 F(X2, X1) (Section 7),
 G, r (XI, X2) is not a (squared) distance between the shapes [ XI ] and [ X2], and
 in particular is not the Procrustes distance.

 Without the asterisk, G denotes the generalized Procrustes sum of squares between
 L > 2 figures. The minimum of expression (2.1) is

 L _ L _
 G]r (Zl, ...ZL) = G7,, ; r (Xl, . . ., XL) )=Z 11 Zi'-Z 11 2. (2.4)

 i=l i=l

 A different Procrustes mean shape [X] is obtained using the full similarity group,
 with minimum

 L _ L _

 G'Y, , rP(XI,*** XL)= ,G* 0, r(i X)= IX,'- XII 2, (2.5)
 i=1 i=l

 where Xi' =Xi' (Xi, X, 'y, IF, F) is the closest figure to X on the orbit of Xi and

 Z tr(Xi'X T) = Z tr(XXT) i i

 for definiteness. G (or G*), without a subscript, will mean Gs,, (3 F (or G*' (, r). The
 generalized Procrustes sum of squares over the Euclidean group (translations and
 rotations only) and translation group are written G, rF(X) and G,(X) respectively,
 where X =(XI, . . ., XL).

 The figure centroid minimizes the Procrustes sum of squares irrespective of the
 scale and orientation of the figure (Section 7), so G7 ,F r = G); 3, F. The results of
 shape analysis are affected by whether scale is standardized (orbits in preshape space)
 or not (orbits in preform space), since Gy; (, rF F G,, 3; r. It is tempting to remove
 location and scale once and for all. Thus a considerable literature exists on the
 definition of scale measures that are stochastically independent of shape (Mosimann,
 1970; Sampson and Siegel, 1985; Bookstein and Reyment, 1989) and related questions
 of allometry (Huxley, 1932). The choice of size statistic (1.3) turns out to be optimal
 in those terms. Recently attention has turned to alternatives to simply centring the
 data to remove location (Siegel and Benson, 1982; Small, 1989) (see Section 7). Other
 choices of objective function are implicit in Mardia and Dryden (1989a, b), Kendall
 and Le (1990), Kent (1990) and Bookstein (1986, 1991).

 Given the optimal Fi, and the -yi, /i (fixed or not), the mean shape is seen to be
 [X], where

 - 1 L- - L (2.6)

 The choices of preshapes Ziri, and more generally of the figures Xi' = 3ixiri +1 JyT,
 say, is a registration or superimposition. X is the co-ordinatewise average of the
 superimposed figures. Thus, generalizing equation (2.6), we can estimate an average
 shape by superimposing figures in various ways. Three prominent choices are edge
 superimposition, optimal superimposition and resistant superimposition.

 The most straightforward superimposition is to match a given edge between two
 landmarks of a planar figure to a common origin and direction. This approach, often
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 called Roentgenographic cephalometry, is widespread in the biomedical literature,
 where the edge chosen may be considered biologically 'invariant' (Moss et al., 1987).
 Bookstein shape co-ordinates (1.7) are a later development and refinement. For
 example Bookstein and Sampson (1990) assume that u has a multivariate Gaussian
 distribution, compute the mean shape for several samples of figures, find geometric
 components of the shape change (Section 15) and perform tests of significance for
 mean shape change relative to the sample covariance.

 A second class of criteria involves optimal superimposition. Procrustes methods
 (Sibson, 1978, 1979; Gower, 1970, 1975, 1984), generalized to allow correlated
 landmarks and non-spherical error distributions, are the principal topic of this paper.

 The third class of superimposition criteria is a compromise between the first two.
 Criteria for robust/resistant superimposition have as goal a high quality match of
 a fraction (more than 500o) of the landmarks, while highlighting local differences
 in shape and form. The repeated median technique (Siegel and Benson, 1982) provides
 robust superimposition of a pair of figures for shape comparison. This may be
 generalized to a superimposition of more than two figures by iteratively superimposing
 each figure on the median of the figures in their current registration (Rohlf and Slice,
 1990).

 The three superimposition criteria are illustrated in Fig. 3 for a small data set
 measured by Descomb comprising eight landmarks in the lateral (medial) section of
 the neural skulls of 10 rats. (So the edges in Fig. 3 represent the bones of the skull,
 as is shown in the left-hand half of Fig. 1.) The sample is divided into a group of
 five controls and five rats with hydrocephaly, a condition associated with excessive
 fluid retention and a pronounced swelling. Each panel of Fig. 3 shows the five registered
 outlines (thin lines) and the resulting average (bold broken line) of the hydrocephaly
 rats. For these data the mean shapes using edge and Procrustes superimpositions are
 virtually identical. The resistant superimposition result differs, mainly because X is
 the co-ordinatewise median.

 3. SHAPE DIFFERENCES

 Unlike the criterion (2.1) defining an average shape [X], there are more subtle
 issues to consider in discussing shape differences. Two important questions are the
 following. How should we report the difference between two shapes A and B? When
 is the shape change from A to B equal to that from C to D? The first question addresses
 the visualization of shape differences; the second is essential to comparing distributions
 of shapes (Section 6) and to regression (Section 16). We introduce some basic notions
 in differential geometry to elucidate the proper approach.

 An affine space E possesses complete parallelism (Crampin and Pirani, 1986),
 meaning that, given two points eA, eB E E, we may draw a vector equal to eB - eA
 at any point of E and remain in E. Therefore, given eA and eB it is sufficient to
 summarize their difference as eB - eA and to report only that quantity. Differences
 eD-ec and eB - eA may be compared without reference to the original eA, . .
 eD E F. Conversely, if the space is not affine then we must report the pair (eA, eB)
 or (eA, eB - eA) and be more careful in comparing two differences.

 Figure space and preform space are Euclidean and therefore affine. Preshape space,
 the sphere, is embedded in an affine space but is not itself affine. (The translation
 group is not part of the isometries of preshape space.) Jupp (1988) discusses residual
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 LO
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 Fig. 3. Three superimpositions of the neural skulls of five rats with hydrocephaly, a localized swelling
 of the skull: (a) edge superimposition; (b) Procrustes superimposition; (c) resistant superimposition
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 1991 ] PROCRUSTES METHODS IN SHAPE ANALYSIS 295

 analysis on the sphere; see also Cox and Snell (1968). Shape space is not readily
 embedded in Euclidean space in general (exceptions include K= 1 and N= 3, K= 2),
 but EN is differentiable for K S 3, and differentiable almost everywhere otherwise
 (Kendall and Le, 1990). Thus in comparing shape differences we use local linear
 approximations to shape space, in terms of either shape co-ordinates (Section 1) or
 the preshape and figure matrices, Z and X.

 The stereographic projection of V to Bookstein shape co-ordinates preserves
 circles, so that a circularly symmetric shape distribution in one space has circular
 contours in the other space. For triangles, and planar figures with more landmarks,
 Bookstein shape co-ordinates are a useful approximation throughout shape space,
 provided that the largest shape difference in the sample is small relative to the length

 of x2 - xl. Bookstein (1984, 1986) summarizes the difference between shapes A and
 B in a prominent vector UB - UA. He is careful to graph the N- 2 vectors in R2
 anchored at the respective landmarks of UA. Such a picture provides a minimal
 representation of the difference in shape between A and B, and is thus excellent for
 visualization. The change from A to B is equal to that from C to D when
 UB-UA=UD-UC and UA Z UC.

 The matrices Z and X are elements of an affine space, so that we can report

 ZB - ZA or XB - XA (together with ZA or XA), provided that the superimposition is
 appropriate. The minimal requirement that Z or Xis a continuous function of shape
 is met by both Procrustes and edge superimposition. When Procrustes superimposition
 of XB or XA uses the similarity group, the superimposed figure X' satisfies the
 respective rotation and scale constraints derived in Section 12,

 XB TXA= XXAXB, (3.1)

 tr(XTAX) = tr(XsTXs) (3.2)
 where the tilde denotes centred. Define the Procrustes tangent space at the pole XA
 to be TxA = [XB - XA: XB E RNKJ. Without the scale constraint (3.2), TxA is an
 (m + 1)-dimensional linear subspace of RNK. With constraint (3.2) TxA is an m-
 dimensional approximately linear manifold in RNK, whose geometry approximates the
 geometry of shape space close to [ XA ] . The Procrustes sum of squares G*(Xc, XD)
 coincides with the squared Euclidean distance in TxA when XD = XA but not otherwise.

 The Riemannian submersion of preshape space to shape space introduces
 complementary notions of vertical and horizontal in preshape space (Kendall, 1989).
 A fibre is vertical because it maps to a single point. A geodesic in preshape space,
 i.e. a great circle, is horizontal if it has no vertical part; Riemannian distances in
 preshape space along a horizontal geodesic are equal to Riemannian distances along
 its image in shape space. Thus, given Zi, i = 1, . . ., L, and the Procrustes mean Z,
 the Zi'_lie on a fan of horizontal geodesics about Z. The Euclidean distances
 Zj' - Z j in PTz, the Procrustes tangent space for preshapes (a subspace of
 R(N- 1)K), equal the corresponding Procrustes distances d( [Zi], [Z]), but

 11 zi' - Zj' 11 d( [ Zi ], [ Zj ] ) when Z1' and Zj' do not share a horizontal geodesic.
 Another way of saying this is that the horizontal geodesics in preshape space do not
 comprise an integral m-dimensional manifold. See Kendall (1984) and Goodall and
 Mardia (1990b).

 How should we compare the shape change A to B with that from C to D, assuming
 that A is similar to C? One method is to superimpose each figure on a common figure,
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 the generalized Procrustes mean XE say, of XA-XD, and to compare the shape
 changes in TxE. An alternative that better preserves the magnitudes of the shape
 differences is to superimpose XB on XA, Xc on XA and then XD on Xc, and to
 compare the shape changes using the embedding of TxA and Txc in RNK. Kendall
 and Le's (1990) Riemannian metric for shape space may help to compare the methods
 in detail. A practical application of this methodology is to the two-sample problem
 (Section 6).

 The Procrustes approach is most useful in computing mean shapes and in deciding
 whether the figures XA and XB are random realizations of the same shape. To
 visualize shape differences a flexible exploratory approach is needed, with goal an
 informative simultaneous summary of the two shapes. One approach is to express
 the shape difference as a smooth deformation displayed as a biorthogonal grid
 (Bookstein, 1991; Bookstein and Sampson, 1990). A different approach is to display
 the change in position of a small subset of landmarks relative to another subset (perhaps
 including all the other landmarks) whose shape changes little. Procrustes
 superimposition does not often reveal such a pattern, but an edge superimposition
 or resistant technique may be successful. In Fig. 4 we attempt to visualize the difference
 between the control and hydrocephaly Procrustes means in Descomb's data, using
 edge, Procrustes and resistant superimposition.

 Of the three superimposition criteria, edge superimposition is the most straight-
 forward but robust superimposition may have most potential. The repeated median
 superimposition readily highlights the localized regions of large shape differences found
 in biomedical applications (e.g. Fig. 4). Edge superimposition is likewise effective
 when the edge lies in a region where the shape difference is small. The unweighted
 Procrustes technique is optimal for Gaussian errors and offers second-order gains in
 efficiency over other superimpositions (Sections 9 and 16). However, in the weighted
 least squares and iteratively reweighted least squares versions described later, Procrustes
 superimposition embraces both edge superimposition and robust estimation.

 4. ISOMETRIES OF SHAPE SPACES

 Both the QR decomposition and the SVD are important in shape theory. The SVD
 appears in the solution of the Procrustes problem (see Section 7, Seber (1984) and
 Ten Berge (1977)), the derivation of its statistical properties (see Section 11 and Sibson
 (1978), in Kendall and Le's (1990) derivation of the Riemannian metrics of shape
 spaces and in Kendall's (1990) applications of stochastic geometry to shape theory.
 To help to motivate the models, estimation and inference later, we now use the SVD
 to describe the isometries of shape spaces.

 The SVD of the Nx K centred figure matrix X appears in Section 1 1. The closely
 related SVD of the preshape Z is

 Z= URAVRT= UAVT (4.1)

 where A is an (N- 1) x K matrix of zeros apart from the first d < min(N- 1, K)
 diagonal elements, Aii= X)i > 0, i= 1, . . ., d, X1 > 2X2). . . > Xd. For reflection
 shapes, VR E 0(K) and UR C SO(N- 1). For shapes VE SO(K) and UCE 0(N- 1).
 The singular values Xi, i= 1, . . ., K, define a point on Kendall and Le's (1990) shape
 disc, which topologically is seen to be the unit sphere SK- 1 modulo the permutation
 group and is obtained by a double-Riemannian submersion of each preshape.
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 The Xi, combined with Stiefel manifold co-ordinates from the first K columns of U,
 comprise another system of shape co-ordinates.

 Both the QR decomposition and the SVD separate the shape W and (U, A)
 components of Z from rotation along the fibres of Z by F and Vr. Additionally the
 SVD reveals the general automorphism structure of shape space. Premultiplication
 of each preshape by an orthogonal matrix UE O(N- 1) sends fibres to fibres,
 horizontal geodesics to horizontal geodesics and is an isometry of preshape space.
 Thus U induces an automorphism, in fact an isometry, of shape space. For K > 3,
 O(N- 1) is the largest group of isometries of shape space. An arbitrary isometry of
 preshape space, in Ot(N- 1)K}, does not send fibres to fibres and horizontal geodesics
 to horizontal geodesics. UE O(N- 1) preserves the singular values (leaves the shape
 disc invariant) so that shape space for K > 3 is inhomogeneous. For example, when
 K > 3 a planar triangle can be rotated to its reflection. Thus the subspace of planar
 triangles is the sphere, S2(1), with a 2:1 identification of the north and south
 hemispheres, and the equator of collinear triangles is then an 'edge'. Incidentally this
 example helps to characterize reflection shape space for planar triangles.

 When K= 2 the automorphism group includes any rotation in 0(2N- 2) that
 multiplies the rows of Z by different planar rotations. These 2 x 2 rotations commute
 with F and VT, so the resulting transformation preserves fibres and horizontal
 geodesics. Combining the two groups we are able to map any shape in N to any
 other by an isometry, and CPN-2(4) is said to be homogeneous, as noted by Kendall
 (1984).

 In summary, the isometries of shape space for K> 3 are induced by preshape
 rotations given by the Kronecker products U* ? V*

 U* ? V*: Z- U*ZV*T (4.2)

 where U* E O(N- 1) and V* E SO(K). Multiplication on the right-hand side by V*
 is simply rotation along a fibre, and U* ? V* is the (N- 1)Kx (N- 1)K linear operator
 (U* ? I)(I ? V*) =(I ? V*)(U* ? I) that multiplies vec(Z) from the left. For K= 2
 the isometries are induced by a generalized Kronecker product. One definition is

 U* ( { V*}N-1: Zi- Vi*zi (4.3)

 where U* E O(N- 1), zi is the ith row of Z, z! is the ith row of U*Z and
 IV*]N-1= Vl, * * ., VN-1} is a set of 2 x2 rotation matrices. U*?fV*}N_I is the
 linear operator 9 Vi*(U* ? I) where @ VP*, the direct sum of the Vi*, is a block
 diagonal matrix. The direct sum does not commute with U* ? I, and an alternative
 to definition (4.3) is (U* ? I) e Vi*; see also Regalia and Mitra (1989).

 We conclude with an interesting connection between the QR decomposition, the
 SVD and Procrustes superimposition when K=2: transform preshape space using
 definition (4.3) so that, for given ZA, (ZA)1I = 1 and (ZA)ij = 0 otherwise. Then, for
 any other preshape ZB, WB is the Procrustes superimposition on ZA, because
 (WBr)ll is a maximum when F=IK (see Fig. 2).

 5. GAUSSIAN MODELS FOR LANDMARK DATA

 Let X1, ..., XL contain the co-ordinates of N landmarks in RK. In a Gaussian
 model for landmark data, each figure Xi is modelled as a similarity transformation
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 (co1, ai, 2i) of a zero-mean Gaussian displacement vec(Ei) - N(O, E) of the unknown
 population mean A,

 Xi= ai(t + Ei)2i?+ 1NiT* (5.1)

 Equivalently, let ('yi, ji, Fi) be the inverse transformation, (co , ai, gi) = (- 3- lF171,
 -1, fT). Then

 xi = iXi ]Pi + lN'YiT-~ N(A, E). (5.2)

 Model (5.1) can be restated: given /u and Ei, we observe [ A + Ei]. The order of
 model (5.1) (displace /u, then transform) ensures that the displacements have common
 orientation and scale relative to ,u. The underlying picture is of a geometrical figure
 whose landmarks are displaced L times and each result is measured in a different

 unknown co-ordinate system specified by the equivalent sets of parameters (CO1, a j,
 0 j) and ('y, if3, Fi). The population mean shape [ A] is well defined but /u is defined
 only to within a similarity transformation. (The likelihood has ridges.) The actual
 choice of /u emerges during estimation, testing and visualization. Thus model (5.1)
 is a model for shapes, not for figures. With appropriate modifications (g2i E 0(K),
 no ai scale components) model (5.1) becomes a model for reflection shapes, forms
 or reflection forms.

 We assume that the Ei: Nx K are independent. A common simplifying
 assumption is E =INK, the identity matrix, in which case the displacements are
 independent and identically distributed (IID) spherical Gaussian. Much of the inference
 for Procrustes methods (Section 11) is first order in c, where var(Ei) = C2NK Thus
 Sibson (1978, 1979) uses the slightly more general model in which errors are Gaussian
 to first order.

 Consistent with Section 3, each displacement Ei is defined relative to the
 population mean A. The covariance E is defined relative to ,u also. From a modelling
 perspective the covariance, or model metric, accommodates two sources of variation
 in the data. These are

 (a) measurement error in digitizing the landmark co-ordinates and
 (b) intrapopulation variation in shape.

 The Ei in model (5.1) are the proper model for measurement error. We assume that
 the intrapopulation variability, or shape density, can be expressed by such
 displacements also, at least to first order. A random displacement Ei of ,u, however,
 includes components for both shape differences and similarity transformations:
 between fibres (in T,) and along fibres. If ,u and Xi are on the same fibre then the
 displacement has only a similarity transformation component. Typically ,u and Xi lie
 on different fibres, and a component of each Ei is confounded with the (yi, fi, 'i).
 (Anticipating Section 10, when E is estimated from the residuals after superimposition,
 the components along fibres are zero to first order.)

 The prototypical estimation problem is to estimate [,u, given X1, . . ., XL. Two
 alternative treatments of the unknown parameters (yi, fi, Fi) lead to a marginal and
 a full MLE of [ , ] . In marginal estimation the explicit (,y, f3j, FI) can be omitted
 from model (5.2), so the usual set-up states that each landmark xi has an

This content downloaded from 187.188.248.190 on Mon, 11 Jul 2016 16:24:19 UTC
All use subject to http://about.jstor.org/terms



 300 GOODALL [ No. 2,

 independent Gaussian distribution with mean gi and covariance Ei. The shape
 density, which is the integral of the Gaussian density in figure space over the orbit
 of the similarity group, has been computed extensively for planar figures.

 With the ,i equal and isotropic errors, E =C2I, Kendall (1984) shows that the
 shape density is uniform. Small (1981, 1984, 1988) and Kendall (1984) discuss the

 IID case more generally. Bookstein (1984) argues that when the gi are unequal and
 E,= c2I, then, for triangles u is approximately normal. The exact shape density for
 triangles is given by Mardia (1989a) and for arbitrary Nby Mardia and Dryden (1989a,
 b). Mardia (1989a) provides a more general discussion for planar triangles, while
 Dryden (1989) and Dryden and Mardia (1991) compute the shape distributions for

 unequal Ei. A stochastic calculus approach has been taken by Le (1990b) and a
 geometrical approach by Goodall and Mardia (1990b), who integrate out location,
 scale and rotation in stages in Kendall's spaces. Goodall and Mardia (1990a) extend
 shape distributions to K > 2 in special cases, through the connections between non-
 central multivariate statistical theory and shape theory: integration over the orthogonal
 group (former) coincides with integration over the special orthogonal group (latter)
 when rank ,u < K. In particular Bartlett's generalized decomposition gives the shape
 density immediately whenever rank ,u= 1, which when K= 2 includes all ,u because
 of the homogeneity of E.

 Full likelihood estimates, with the (yi, ji, Fi) as nuisance parameters, are
 computed by Procrustes methods. The two estimates differ for moderately dispersed
 shapes, a fact verified empirically by Ian Dryden and myself. The contribution of
 a figure X to the joint likelihood is either the integral of the figure space density over
 the orbit of the similarity group (marginal) or the maximum over that orbit (full):
 see Fig. 2. For translations only and Gaussian errors, the distinction is vacuous; with
 the inclusion of scale and rotation the difference is sizable when the shapes of the
 Xi are widely dispersed.

 Which of the two approaches is the more realistic? In terms of measurement error
 both alternatives are perhans too extreme: data come with a perturbation to the co-
 ordinate frame but also with clues, at least partially independent of the landmark
 data, to the correct registration. An example of such clues is the outline of bones,
 between the landmarks which are at sutures of the bones: Fig. 1. (The correct
 registration is a construct of the model and is not estimable; it is ,u + Ei. Unless the
 shapes of the Xi are identical there is no common co-ordinate system apart from this
 construct.) A more realistic model may have a Bayesian flavour, involving an explicit
 non-diffuse prior on the similarity transformations, for example based on a technician's
 use of informal edge superimposition, or some other visually estimated procedure,
 in selecting the co-ordinate system for each figure.

 We do not have extensive data to use to choose between marginal and
 full MLEs given variation in shape (b). Further alternatives are the similarity invariant
 complex Bingham distribution for shapes of planar configurations (Kent, 1990) and
 the template models of Chow et al. (1988) involving probability measures on
 polygons.

 5.1. Choice ofE
 Motivated by the isometries of shape spaces, we emphasize factored covariances

 E of the form

 E=ENO EK (5.3)
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 where EN: NxNand EK: KxK. If E:1 =QTQ, the Cholesky decomposition say,
 then each row of QEi is IID with covariance EK. Thus EN and EK model the
 covariance between landmarks and non-spherical displacement at each derived
 landmark respectively. When K= 2 there are several generalizations to consider, the
 most attractive being when the rows of QEi are independent with covariance EKj,
 j= 1, .. ., N, for some choice of Q. Then

 N

 E = (Q- I I) ED EK}(QT ? I). (5.4)
 1=1

 For identifiability we require, for K > 3, tr(EN) = 1 and, for K= 2, diag(EN) =IN
 (SO EN is a correlation matrix). The factored structure (5.3) reduces the number
 of covariance parameters from NK(NK+ 1)/2 to K(K+ 1)/2+N(N+ 1)/2-1.
 There are N(N- 1)/2 + NK(K+ 1)/2 covariance parameters in model (5.4). Table 2
 gives counts of the covariance and model parameters for several choices of
 N and K. In practice, in estimating E from the data, we must restrict models (5.3)
 and (5.4) to a simple structure, such as EN=I or EN diagonal, unless L is
 exceptionally large.

 For model (5.3) with f3= 1 and ]Pi= I, the factored covariance between the kth
 and m th co-ordinates of respectively the jth and lth landmarks of Xi is

 COVf(Xi)jk, (Xi)1m1 (EN)jl(EK)km. (5.5)

 Thus landmarks tend to perturb in parallel directions. As a model for measure-
 ment error, equation (5.5) is a drawback, as the direction of greatest variation
 may differ markedly between landmarks. Fig. 5 shows data of 10 undernourished
 rats (details are given in Section 14), superimposed on the Procrustes mean.
 The variation at the landmarks tends to be both parallel and perpendicular to the
 sutures between bones. This pattern is accommodated by model (5.4). As a model
 for shape (b), the parallel displacements in model (5.5) amount to a shearing
 component, which are part of the natural affine family of deformations of a figure
 (Section 15).

 Procrustes methods yield MLEs (Section 10) when the covariance has the form
 (5.3) or (5.4). When K= 2 and the covariance is completely general then a weighted
 multiple-regression technique may be used. We now summarize Procrustes analysis
 of a one-sample model and develop a two-sample model. The two-sample model is
 easily extended to one-way ANOVA in Section 14.

 TABLE 2

 Covariance degrees of freedom for selected N, K and E

 N K NK m EN 'K IN?O EK ? Kj Equation (5.3) Equation (5.4) 2

 3 2 6 2 6 3 9 8 12 21
 8 2 16 12 36 3 24 38 52 136
 20 2 40 36 210 3 60 212 250 820
 40 2 80 76 820 3 120 822 900 3240
 4 3 12 5 10 6 24 15 30 78
 10 3 30 23 55 6 60 60 105 465
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 Fig. 5. Pucciarelli data of 10 close-bred undernourished rat pups at 21 days superimposed by GPA:
 the IO x 20 superimposed landmarks are shown, together with ellipses containing 95' o of a fitted bivariate
 Gaussian distribution at each landmark, and for all landmarks together (inside)

 6. PROCRUSTES ANALYSIS IN ONE- AND TWO-SAMPLE MODELS

 6. 1. One-sample Model
 Given X1,.I , XL and model (5. 1), we may wish to compare the population mean

 shape [ ,u ] with the shape [ vJ ] of the fixed figure vJ say (e.g. an equilateral triangle
 when N = 3). We first obtain an estimate [ i]of [u]by superimposition/maximum
 likelihood. The comparison may include visualization of the difference in shape
 between [i]and [ vJ] a formal test (Section 14) and, if there is a significant shape
 difference, some parametric descriptions and testing of it (Section 15). We may
 superimpose vJ on ,i(or ,ion vJ), transforming vJ to vJ' say. One or more superimpositions
 may help to visualize the shape difference, but a specific, optimal, superimposition
 is needed to test Ho: [ v =[I ] versus H:- [ ,u ] =,& [ IJ ] . For this we choose vJ' to make
 the residual R =IJ'-, assall as possible in the model metric E. We minimize
 11 R 1 = T-1r where r = vec(R). The formal test of significance is an F-ratio test
 or Hotelling's T2-test in the tangent space T,.

 6.2. Two-sample Model: Cross-sectional Data
 Let XI, . . ,XLX and YI, . . ., YLY be N xK co-ordinate matrices of samples of

 LX and LY figures from two populations. (We use the subscripts X and Y where
 necessary.) Model (5. 1) becomes

 Xi = aXi(AX + EXi) OXi + 1N Xi (.1

 Yi =a?eYi(ty Y+ Ey )gYi + 1NU Yi ( .2
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 We assume that covfvec(Ex)}= Ex, covfvec(Eyj)}= Ey and that the Exi and Eyi are
 independent. In comparing the two populations we shall superimpose one mean
 estimate on the other, in this case ,i^x on 1iy say, with one or more superimpositions
 to help to visualize the shape differences and another, optimal, superimposition to
 test the hypothesis Ho: [Ax] = [Ay] versus H: [Ax] #& [Ay]. The optimal
 superimposition makes ji-, iZ as small as possible relative to both sets of errors.

 Suppose that ,i is the similarity transformation ('y, f, F) of jx, and likewise
 define ,x = 3,LXF + 1N yT. Then model (6.2) becomes

 Xi = ?eXi(,ux+ Exi)s2xi + lNXI T (6.3)

 where

 (Coj a,~ ,?2i)(COX,i_axi7UTiy/3, aX, /f, ]FT UX), (Cxi ?xi s xi ) X-xi gi/ X :sr X

 the composition of (wxi, axi, ?2xi) and ('y, f, F ). The displacement after
 superimposition is EX,=fExi]T, and the transformed covariance is

 Ex = covfvec(Exi)}

 = f2(I ? II) )X(I? ]PT)

 = f2EXN @ IEXKIT (6.4)

 say. Exi N(O, c2I) implies that EX, - N(O, f2C2I) since F is orthogonal.
 The distribution of R = Ax-Ay depends on Ex and Ey. The formal test of

 significance (Section 14) is an F-ratio test or Hotelling's T2-test in the union of the

 subspaces Tgx, and Tj,. For simplicity we may assume that Ex, and E y are equal;
 for example when the errors are isotropic this implies that Ey= =lEx. Methods for
 unequal E appear in Anderson (1984), section 5.5. In any case, the two tangent spaces

 Tg, and Tfi, must almost coincide.

 7. PROCRUSTES METHODS FOR ESTIMATION

 In this and the following section we review the use of Procrustes analysis to obtain
 weighted least squares (WLS) and iteratively reweighted least squares (IRLS) estimates
 of the population mean and covariance matrices. (We use the term weighted, instead
 of generalized, to avoid confusion with GPA, without implying a restriction to diagonal
 covariances.) When each covariance matrix is the identity, unweighted OPA and GPA
 are used. We discuss WLS estimation for the models (5.3) E = EN ? EK and its
 generalization (5.4) when K =2. WLS for EN #I is straightforward. The algorithm
 when E K #I is more difficult, as the covariance and orthogonal mapping are
 mismatched. Following the discussion of weighted Procrustes methods, we note that
 the Procrustes E need not match the model E (Section 9) and describe sequences of
 steps for fitting the one- and two-sample models when the covariances are known
 (WLS) or unknown (IRLS) in Section 10.

 7.1. Ordinary Procrustes Analysis
 Let X and Y be two figures containing N landmarks in RK. Parallel to models

 (5.1) and (5.2), write

 X= a(Y+ E) 2 +lNcOT, (7.1)

 Y=IXF + 1NyT-E (7.2)
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 where (co, a, Q) and ('y, (, F) are inverses. Model (7.2) is the multivariate linear
 regression, or affine, model with the restriction that 3Fr is a multiple of an orthogonal
 matrix. Let e = vec(E). The weighted Procrustes, WLS, estimates ((3, F, ) minimize

 the L2-norm 11 Y-flXF xr - T 112 = eTE -le. With XI' = fXF +1NiT and R = X' - Y
 the weighted Procrustes sum of squares is written G*(X, Y; E) = rT E - Ir.

 For any K and factored covariance model (5.3), we minimize

 tr(Y- XF - y1N T)TE N(Y- 3XF - 1NY T) E -K (7.3)

 by OPA, written OPA(2). The unweighted Procrustes technique, when EN=IN,
 EK=IK, can be traced to Mosier (1939). Sibson (1978, 1979) considers OPA in
 detail. Mardia et al. (1979), Gower (1984) and Seber (1984) include excellent
 introductory expositions of OPA. For consistency with the conventional regression
 model we have interchanged the roles of X and Y relative to these accounts.

 In outline, the OPA translation i is the difference

 (Y- Y)a(X - x) =1NTY (7.4)
 where X and Y are centred. We now choose S and P to minimize 11 Y-OXF 112.
 Expanding this expression,

 |-JxF ||2=tr( yT y) +32 tr(XTX) -2 tr( rTX). (7.5)

 Let the SVD of YTX be LAMT. Then for any 1 the minimizing F is

 r=MLT=(XTYYTX)-1/2XTY (7.6)

 and, given F = F, regression through the origin gives

 tr(YTXr) tr(XT Y YTX)112 $= ~~~~ ~~ = ~~~ ~~~ - ~(7.7)
 tr(rTXTXr) tr(XTXk)

 The estimate P does not depend on the scale of the two figures, but f depends
 on r. Therefore least squares estimation of the similarity transformation ('y, (, F)
 has the natural order y (mean centring), then F, and finally (. On interchanging the
 roles of X and Y, the estimated rotation is FT but the scale is not 11/3. As we have
 noted, these two Procrustes sums of squares are unequal, G*, r (X, Y) 4 G*2, r (Y
 X), and also do not coincide with the squared Procrustes distance in Kendall's shape
 space, G*, :; r(X, Y) = G Y,; (Y, X). This is not surprising, as the three analogous
 quantities differ in the multivariate regression setting, where they correspond to two
 different projections and a squared Euclidean distance respectively. What is notable
 is that, for orthogonal fitting without scale, the three quantities coincide for size-
 and-shapes, and for spherical data. Model (5.1) shows that the correct approach is
 asymmetric in Xi and X. However, some symmetric choices of scale and measures
 of congruence are those of Sibson (1978) and Robert and Escoufier (1976). Simple
 linear regression is an interesting special case. When K= 1 each of the figures is a
 vector in RN, the orthogonal transformation is F = ? 1 and the Procrustes model for
 two figures reduces to the simple linear regression model with intercept y and slope
 (1F. Two vectors X and Y are affine equivalent if their correlation R = 1, and Kendall's
 shape space EN is the sphere S(N-2). When 11Ixi = 11 YII = 1 the Procrustes sums of
 squares are each 1 - R2 and the squared Procrustes distance is twice that.

 The OPA described above is for reflection shapes, as Kendall (1984) points out.
 The expression tr( YTXr) is bounded above by tr(A) when L and M are orthogonal.
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 Thus when L and M are special orthogonal the upper bound is tr(A) - 2AKK
 (A11 > A22 > * * . > AKK). In practice, when just one of L and M has determinant - 1
 we multiply the sign of the Kth column of that matrix by - 1 before constructing P.

 The centred co-ordinate matrices X and Y are the components of X and Y
 orthogonal to the projection by 1N1T/N. When E = EN ? E2K the weighted least
 squares estimate of y is determined by the projection

 B=1N(1N5JT11N)'1NE-1, (7.8)

 1NT=B(Y-f3Xf). (7.9)
 Equation (7.9) generalizes equation (7.4). The projection minimizes the weighted sum
 of squares for each column, so minimizes expression (7.3) for all matrices E2K*
 Furthermore, the translation can be eliminated once and for all by projecting each
 of X and Y separately, as this minimizes expression (7.3) for all choices of , and F:

 X =(I-B)X,

 Y= (I-B) Y. (7.10)

 For general E the optimal F does not depend on S. When E K = IK and E N is non-
 singular, expression (7.3) becomes

 || Y-_3XF 11I2 - )tr(YT5?l Y) +?f2tr(XT -IX) -2f3tr(XTENl YF). (7.11)
 We replace X by QX and Y by QY, where EKl=QTQ is the Cholesky

 decomposition, and compute F as before. When 2K 5I there is no explicit
 expression for Xr, as there is in equation (7.7), the minimum is not unique and the
 iterative algorithm of Koschat and Swayne (1989) may be used. Given the rotation
 F, weighted regression through the origin yields

 vec(X.k)TE- 1vec(Y ) tr(X_)TN (_Y_ ) _K
 = ~~~~ ~~ = ~~~~~ ~~ * ~~(7.12)

 vec(XF)TX Ivec(X ) tr(XFP)TE1(X ) (1

 When K= 2 and E has the form (5.4), we minimize a generalization of expression
 (7.3). After premultiplication by Q we may assume that XN=I. The expression for
 the weighted least squares estimate of location is relatively complicated and is not
 reported here. For rotation, write

 Kj1=DjT( wi 2)Dj (7.13)

 and xj, yj for the jth row of the centred X and Y respectively. We choose F to
 minimize

 s7NI (Yj- FTXj)TDI( oj 2 DDJ(yj T Xj). (7.14)

 The rotations Dj commute with F so that, after transforming the xj and yj
 separately, we may assume that each Dj is the identity. Let Q be the rotation angle
 of F and t = cos ,. Then omitting the subscripts j and summations, and writing (xI,
 x2) and (YI, Y2) as landmark co-ordinates, expression (7.14) has extrema at the
 solutions of
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 ? t(X2X2)(W2_W2)+ XlyW2 + -(t2)

 =(2t2 - 1)XX2(W2 _W2) -t(X2y, w2-_Xly2 W2). (7. 15)
 This generalizes Koschat and Swayne's (1989) result when K= 2 to the non-IID case.

 For general , and K= 2, we can estimate (y, 3, F) by solving a WLS multiple-
 regression problem with 2N observations, one response variable, vec(Y) and four

 carriers. The carriers correspond to regression parameters a cos i6, 3 sin 4, yl and 72
 (Goodall, 1983; Merickel, 1988). This approach is not useful for size-and-shape
 analysis. For general S and K ) 3 the analogous regression is non-linear, with
 K(K+ 1)/2 + 1 parameters.

 8. GENERALIZED PROCRUSTES ANALYSIS

 GPA with E =I is described by Gower (1975). We first outline his algorithm, with
 Ten Berge's (1977) modification, and then discuss the weighted case. GPA is an iterative
 algorithm, that successively updates the Xi' to minimize the generalized Procrustes
 sum of squares (2.4) or, equivalently,

 Z IIXi'-A1X 112 (8.1)
 i<j

 subject to the constraint

 ) tr(X, Xi,T) = Z tr(XiXi)* (8.2)
 i i

 Estimates of the translations, rotations and scales of the similarity transformations

 (yiy, fil, Fi) (5.1) are computed in that order. The translation is handled once and
 for all by centring. The rotations Fi are determined iteratively. Starting with
 Xi (old) = Xi, let

 X(i)= L : 1 xJ/o (8.3)

 Then X,/(ew) is the ordinary Procrustes superimposition, involving only rotation, of
 Xi'(1d) on X(i). The L figures are rotated in turn. At each step expression (8.1)
 decreases, until at convergence the matrices XiTX(i) are symmetric positive
 semidefinite. In practice 3-5 iterations, each containing L OPA steps, often suffice.

 Lastly, we deal with scaling. Let 4: L x L be the correlation matrix of the vec(Xi')
 with principal eigenvector 0 corresponding to the largest eigenvalue. Then (Ten Berge,
 1977)

 31i(Z = 1A 112)/ fIXi II2i1/20,. (8.4)
 k

 But then the X(i) may have changed and it is necessary to repeat the rotation
 iterations. The complete algorithm will include a total of between 3 x 2 x L and 5 x 3 x L
 OPA steps (Table 3), at each of which the sum of squares (8.1) does not increase.

 OPA is, with some small adjustments (Gower, 1975) the generalized version with
 L = 2. As already noted, the generalized Procrustes sum of squares is the sum of L
 Procrustes sums of squares. Some modifications, typically unimportant in practice,
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 TABLE 3

 GPA rotations and scales for a sample of 10 undernourished rats, showing 8 rotation and scale steps

 Rat Rotations (deg) Scale Rotations Scale

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

 1 0.04 -0.271 - 0.0352 -0.00014 0.976 0.000015 - 0.0000187 1
 2 -1.33 -0.151 -0.0220 0.00233 0.987 0.000001 -0.0000208 1
 3 0.85 -0.256 0.0026 0.00231 1.050 -0.000121 -0.0000097 1
 4 -1.33 -0.150 0.0178 0.00075 1.100 -0.000099 0.0000002 1
 5 -2.54 0.119 0.0064 0.00018 0.990 -0.000075 0.0000086 1
 6 1.06 0.019 0.0051 -0.00042 1.030 0.000146 -0.0000067 1
 7 -0.24 0.049 0.0001 - 0.00048 0.973 0.000010 -0.0000085 1
 8 0.73 - 0.032 0.0039 -0.00100 0.941 -0.000094 0.0000010 1
 9 - 1.34 0.119 -0.0093 -0.00005 0.972 -0.000127 0.0000152 1
 10 1.73 -0.059 - 0.0037 0.00036 1.000 0.000191 -0.0000044 1

 similar to those discussed for OPA, apply when GPA is used to estimate a mean shape,
 and not a mean reflection shape.

 When E# I, E = EN ( E K, expression (8. 1) becomes

 EIIXi'-Aj 'II (8.5)
 i<j

 and the generalized Procrustes sum of squares is

 L -L

 Gz , r (X; E) =EG, o, r (Xi X )=E|X - ||. (8.6)
 i=l i=l

 where X = EXi'/L. The translation, rotation and scaling steps of GPA are modified
 as needed. From equations (7.10) the Xi can be projected separately, by I-B, in
 place of centring. The rotation steps are modified using either the Cholesky-
 transformed data, Koschat and Swayne's algorithm or its generalization when
 K= 2. For the scaling step we replace each cross-product vec(XI')Tvec(Xj') by
 vec(Xi')T E -I vec(Xj ).

 9. SUPERIMPOSITION METRIC ES AND MODEL METRIC EM

 The population means in the one- and two-sample models (Section 6) are estimated
 using specific sequences of OPA and GPA steps. Before describing these procedures,
 we recognize that the metric E used in Procrustes analysis may differ from the metric
 E of the model. We call these the superimposition metric Es and model metric EM
 respectively. Any unknown parameters in the model metric must be estimated. The
 superimposition metric is selected by the user; it may equal the estimate of the model
 metric. EM makes sense, but Es does not.

 A key intuition is that many choices of superimposition metric yield consistent
 estimates of the population means, or other parameters, such as regression parameters
 (Section 16). In model (5.1) the (K(K+ 1)/2 + 1)-parameter similarity transformations
 (wi, ai, ?i) act on each landmark of the A + Ei separately and can be estimated using
 any subset of at least (K+ 1)/2 + 1/K landmarks in any metric (a submatrix of ES).
 The resulting Procrustes estimate of the population mean may be consistent either
 as L-+ oo or tr(EM) -O0. Given an estimate [j2] of [,] we may estimate EM from
 the cross-product of the residuals Xi'- j2 (Section 10). Confidence regions and
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 hypothesis testing should be based on the model metric and may be biased if the
 superimposition metric is used uncritically for inference. Four strategies for choosing
 the metrics are as follows.

 (a) Use superimposition metric Es =INK, allowing unweighted OPA and GPA.
 Goodall and Bose (1987) further assume that EM=I; a better choice is to
 estimate EM.

 (b) For planar data, superimpose on an edge and base inference on the distribution
 of the resulting Bookstein shape co-ordinates (Bookstein, 1986; Bookstein and
 Sampson, 1990). This is a limiting case of our general framework, when
 (Es)-' has infinite entries in the 4x4 submatrix corresponding to the two
 selected landmarks. The covariance of the remaining 2(N- 2) shape co-ordinates
 is the estimate of EM. This approach can be adapted to the other systems of
 shape co-ordinates mentioned in Sections 1 and 4.

 (c) Use robust superimposition, which may involve different weighting of landmarks
 in different figures, and inference based on an estimate EM.

 (d) Starting with an initial superimposition, ES =I say, the model metric is
 estimated iteratively from the data and used for superimposition, ES= =m.
 Estimates and tests are efficient when the two metrics coincide, i.e. the iterations
 converge.

 The details of maximum likelihood estimation, strategy (d), are given for the one-

 and two-sample models in the next section.

 10. ITERATIVELY REWEIGHTED LEAST SQUARES FOR SHAPE DATA

 10.1. Efficient Estimation in One-sample Model
 A four-step strategy to compute MLEs for the one-sample model is the following:

 (a) initial choice of Es, ES = I say; set EM = Es;
 (b) GPA(EM) to determine ut and the Xi';
 (c) estimation of the model covariance;
 (d) OPA(EM) to superimpose i on,i.

 Write Ri = Xi'- ,u and ri = vec(Ri). The MLE of the unrestricted model metric EM in
 model (5.1) is

 EM = Er rT/L. (10. 1)

 When EM is factored model (5.3) the MLE decomposes as Em = EN O E, where

 K =LNR Ri, (10.2)

 E - ZR RT/tr(2K). (10.3)
 N LKi I

 The generalized Kronecker product covariance (5.4) is estimated similarly, with the
 proviso that we may take shrinkage estimates XEK'.+ (1 - X) to avoid singularities
 due to rank EKm < 2. When EM is a multiple of tie identity, EM = e2I, the MLE is
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 2Z= ErTTr /LKN. (10.4)

 In general, the structure of the model metric is chosen, and the appropriate MLE,

 is then computed from the Ri. Each Xi'- is in TA, so unrestricted estimates ?M or
 ?m will be singular, but nevertheless desirable (Section 5). These expressions for the
 MLE of EM do not depend on Es; however, the distributions of A and EM do depend
 on ES. The joint likelihood either increases or does not change at both steps (b) and
 (c) (provided that the class of permitted covariance matrices remains the same or
 becomes larger). Steps (b) and (c) may be repeated to convergence.

 10.2. Efficient Estimation for Two-sample Model: Cross-sectional Data
 We assume that, when superimposition is complete, y2x j24 and also that the two

 model metrics are equal, Ex, = Em'. To pool the covariance estimates we include the
 OPA superimposition, step (d), at each iteration:

 (a) initial choice of E sand E s to superimpose the Xi and Yi respectively; set
 x =Exand EM=EM=ES;

 (b) GPA(Eim) and GPA(Em1) to determine i2x, Xi' and ^y, Yi' respectively;
 (c) estimation of the model covariances from the Xi' - ^x and Yi' -,7

 respectively;
 (d) OPA(L M) to superimpose A,x on Ay.

 Compute Exm using equation (6.4) and pool the covariances to give

 ? M = (LXxr m,+Ly,my)/(Lx+Ly). (10.5)

 Set EM = ?M = ?M.
 The joint likelihood of the two samples is non-decreasing at each step. Steps (b)-

 (d) are repeated to convergence. A modification of this algorithm to allow more than
 two samples, one-way ANOVA, is used in Section 14.

 11. INFERENCE

 Sibson (1979) shows that when E N(O, c2I) in model (7.2), where c is small, then
 the ordinary Procrustes sums of squares G* ,, r (X, Y) and G*, r (X, Y) have central
 x2-distributions. These results are extended to GPA by Langron and Collins (1985).
 Perturbation analysis for GPA uses the first iteration only and is then essentially the
 same as perturbation analysis for OPA, with the multiplication of each degree of
 freedom by L - 1. This follows because GPA can be regarded as multivariate ANOVA
 (MANOVA) in the Procrustes tangent space T. Langron and Collins (1985) present
 ANOVA tables for both OPA and GPA, including sums of squares for rotation,
 translation and scale components of the similarity transformations. In the context
 of shape analysis, their ANOVA is appropriate for comparing alternative
 superimpositions but does not directly provide tests for shape differences.

 As a foundation for multivariate analysis we derive a multivariate Procrustes statistic.
 The techniques used are similar to those of Sibson (1979). However, Sibson, and
 Langron and Collins, computed only aggregate expressions for the sums of squares.
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 Our derivation uses the SVD of X and is consequently more direct. Goodall and Bose
 (1987) sketch the derivation of a multivariate Procrustes statistic, without the SVD.
 With the roles of X and Y reversed here relative to these accounts, the (negated)
 residuals R = X' - Y are orthogonal to X, not to Y. Both Procrustes tangent spaces
 Tx, and Ty contain R, up to scaling which is non-linear.

 11. 1. Multivariate Procrustes Statistic, Es = EM = INK

 Let X and Y be a pair of figures, with X mean centred. Let Xr, X, r, and
 xi=Xy , r be the Procrustes fits of X to Y allowing respectively rotation (and
 reflection), rotation and translation, and rotation, translation and scale. We define

 the Nx K multivariate Procrustes statistics Sr, S7, r and S = S7, o, r to be respectively
 the differences Xr' - Y, Xy r - Y and R =X' - Y double rotated, in both RN and RK,
 to the principal axes of the model oxr.

 To include translation, we use the SVD of the mean-centred X instead of the SVD
 of the preshape Z (4.1). Assume that N> K, and write

 X= UZ VT, (11.1)

 where Z: Nx K is zero apart from the diagonal elements (i> 0, VE SO(K) and
 U: NxNE 0(N) with Nth column 1NA N, which is possible because X is mean
 centred. The vectors of singular values of Z (4.1) and X (11.1) are related by
 X= /tI(Tt), the Vs in equations (4.1) and (11.1) are identical and U=HU.

 The multivariate Procrustes statistic for rotation only is

 Sr = UT (Xrl- Y)r T V. (11l. 2)

 To first order in c it is a simple linear function of the double-rotated errors,

 P = UTErT V. (11.3)

 Assume that I = 1 and y = 0, i.e. X and the perturbed Y differ by a rotation r only.
 Then

 Sr= UT(xr- Y)rT V

 = UT [ (XI(XT(xF -E)(Xr- )TX 1/2XT-IN] (xrF ErT V

 - ['V[ET(E P)(X,-P)TZ11/2ZT-IN] (Z-P). (11.4)
 To find the inverse root, we equate the KxK term in braces to (ZT_ - cC)2, to first
 order in c. This gives

 ZTZPTZ + ZTP2TZ= -EmTmC+ CCETE,

 so that, writing P= (Pij), C= (Cij),

 (Cij= jpjPi t+ (, ij t2)(i+ (

 Equating

 (ZTZ - eC)f(:Tm)-1 + cA =I,

 then, to first order in c,

 Aij= Cj/i2tj2.

 A and C are both K x K matrices. Substitution into equation (I 1.4) gives, for rotation
 only,
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 Pij + 0(C2), i =j,

 (Sr) ij = pi + !it t} pJ + 0(c2), i>K, (11.5)

 Pij + 0 (,E2) I <, 6ij K.

 For rotation and translation,

 ((Sr) ij i<N,
 (S,, r)u= $(11.6)

 O, i = N.

 For rotation, translation and scale,

 ((Se, r)j, i54j,
 si1= K (11.7)

 tSi i =j,

 where, writing p = (pi) = (Pii) and s=(si),

 s=(I_ :t)p. (11.8)

 The distributional results of Sibson (1979) follow immediately from equations
 (11.5)-(11.8) and the distributional assumptions on E: asymptotically

 Gr* = || Sr 112 - e 2XN-/2K-1

 G,, rI=I|| Sy, rI|| e X~NK- ?12K(K+ 1) (11.9)

 G*=G*o, r= II Sy,~,pIr12 -C_2X2KA(K 'i * z s |S,,r| NK- V/2K(K+ I) - P

 As a simple extension, we give the distribution of G* when P-N(PO, 2INK). The
 Procrustes fit removes the component similar to X from both PO and the random
 part P-PO. Some algebra, or a little reflection, shows that to first order

 G*(X, Y)= IISII262X2 [G*(X, Po)). (11.10)

 12. GEOMETRICAL INTERPRETATION AND RESIDUALS

 In the double-rotated space, UTXV= Z and UT Y TV= -P. Any pair of
 columns of UTXV, the ith and jth say with 1 < i<j K, are orthogonal N-vectors,

 along the respective co-ordinate axes, with lengths (i and (j. In the (i, j) co-ordinate
 plane these differ from the corresponding Y-vectors by (Pii, Pij) and (Pji, Pjj)
 respectively. To minimize the sum-of-squares error we rotate Xin that plane through

 an angle &jj. The minimum is achieved when

 tan y;j tj Pii - ti p (12.1)
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 To first order in c the expression i Pii + j Pjj in the denominator of equation (12.1)
 can be ignored. We choose ,ij to minimize

 (P1j+ 4,j it)2+ (Pf- ~,j j)2, (12.2)

 and the choice of one 6ij does not affect the other 6ij (to first order). Sij and Sji then
 satisfy equation (11.5). The K(K- 1)/2 pairwise 6ij together determine the 'rotation
 error' matrix 7rT. In double-rotated co-ordinates

 ( j T)i = bij + (X Pii ( i pij(12.3 (PrT), ~+(12.3)

 a fact buried in equation (11.4). With f not necessarily unity, we choose the scale
 3 to minimize

 K

 (12.4)
 i=l1

 which is regression through the origin. Thus

 (12.5)

 The residuals Sii then satisfy equation (11.8), and the combined scale-rotation matrix
 3-l3rTP has diagonal elements (12.5) and off-diagonal elements (12.3).

 From Sji= i/ijSij, ZTS is symmetric, or equivalently YTXP is symmetric.
 However, the exact residuals from fitting rotations do not satisfy these constraints
 with tan 46ij given by equation (12.1). This is because the double-rotated co-ordinates
 are updated by the rotations ,ij. When this adjustment is made, the exact double-
 rotated residuals S from the Procrustes superimposition (with rotation, translation
 and scale) of X on Y satisfy the K(K+ 1)/2 + 1 linear constraints found in the first-
 order expressions (11.5)-(11.8), namely

 (isij= (i 1 i<j K, )

 SNj=O0 1j K, K (12.6)
 K)

 1=l1

 These are the global, not just first-order, constraints that define the Procrustes tangent
 space (Section 3).

 13. INFERENCE FOR GENERAL ES AND EM

 Tests for difference in shape are generally based on a Hotelling's T2-statistic in
 T^, written jjR jj , where ?=?M is a covariance estimate from the Ri. Alternative
 forms of the statistic are tr(RT E1lRE-l) when E=EN? EK and jjRjj2/^2 when
 ? = 42INK.

 For general metrics, we first examine the situation when the superimposition and
 model metrics coincide, E s = E M = E. When E = E2INK then asymptotically IS 112 has
 a x2-distribution by equations (11.9) and 11 S II2/ 2 has an F-distribution. Details for
 the one- and two-sample models follow in Section 14. For E = EN ? I,
 (EN)'1 = QTQ, the same results, including equations (11.5)-(11.9), hold (premultiply
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 X and Y by Q and double rotate to the principal axes of QX). For more general E
 we may use the asymptotic properties of maximum likelihood and Hotelling's
 T2-statistic: - 2 log-likelihood, essentially 11 R j/2, asymptotically has a x2-distribution
 (cf. Anderson (1984), theorem 5.2.3). Alternative specifications of the model metric
 can also be compared using Wilks's likelihood ratio test.

 Equations (11.5)-(11.8) show that the structure of the multivariate Procrustes
 statistic does not depend on the distribution of P. Thus when the metrics do not
 coincide we may be able to compute the distribution of the multivariate Procrustes
 statistic. (However, when E2Sy,I we do not have an explicit form for the rotation
 to insert into equation (11.4). This is unlikely to occur in practice because s=I is
 preferred for computation.) The most frequent metric mismatches are

 Es=INK, EM= EN? EK3INK (13.1)

 and

 E NS = E KN 'MIK , M=N K. (13.2)

 Given equations (13.2) the distribution of the S is computed using equations (11.5)-
 (11.8) with covfvec(P)J=C2(UTQ ? VT)EM(QTU? V).

 As a further example, we express the Procrustes statistic G*(X, Y) as a quadratic
 form when K= 2, Es = INK, and E M has the generalized factored form (5.4). Then

 vec(S) =ABCu (13.3)

 where u N(O, INK) and A, B and C are each NKxNK matrices of constants,
 CCT = E M, BT = U E V and A is block diagonal. The three blocks of A are, from
 equations (11.5)-(11.8), A*: 4x4, I2(N-3), and a 2 x 2 matrix of zeros, where A*
 appears in

 Sll \ 42 ? ? -41\0 /2 Pl1
 \\ - 1 ( ~~~~~ ~ 1~~2 0 ~(13.4)

 S21 el+e 0 ~1 ~2 el 0 P21/
 S22 1 12 0 0 0 12 P22

 A * is a highly structured, symmetric idempotent matrix that is familiar in Procrustes
 analysis with K= 2. It may be called the Procrustes projection matrix.

 Let CKjC1 = SKj be a decomposition of the individual landmark covariance and
 Q be as in equation (5.4). The Procrustes statistic is

 G* = 11S112=uT s9 CT(Q-TU? V)A(UTQ-1 ? V) s CKU. (13.5)
 When E M = INK the standard central x2-result (11.9) follows immediately. Otherwise
 we may approximate G* by a scaled x2-distribution by matching first and second
 moments. For example,

 EG*=trfA(UTQ - I VT) e XKj(Q TU U? V)J. (13.6)

 In related work Davis (1978) derives a scaled X2-approximation to the distribution
 of the Procrustes statistic (Gower's m2) in superimposing two configurations X and
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 Y with E M = IN ? EK, where before OPA each configuration is transformed to its

 canonical variates, e.g.
 X*=XE -1/2 (13.7)

 where LK is the estimated covariance (10.2). Then X* and Y* have covariance INK,
 to first order. This is a different set-up from shape analysis, where superimposition
 must use similarity transformations in the original space, not the canonical variable
 space. -1/2 does not commute with VE 0(K), even when K= 2. Sibson (1979)
 includes some further perturbation analysis of Davis's (and related) problems.

 14. TESTS FOR SHAPE DIFFERENCES

 Tests for the one-sample and two-sample models are based on the inference results
 of Section 11. We discuss the extension to one-way ANOVA and apply the tests to
 some nutritional data.

 14.1. One-sample Test for Shape Data
 In the one-sample case, with Es = = E2INK, the two Procrustes sums of squares

 have independent distributions G*(v, A) --E2/LX2 and G(X) 2X( 2)m The F-
 statistic for testing Ho: [v] = [v] against general alternatives is

 (L - 1)L G(vXA) _ Fm,(L- l)m (14.1)

 14.2. Two-sample Test for Shape Data
 In the two-sample case, with i,u= jiy and ES = EM,= rM = E2INK (Section 10), the

 three Procrustes sums of squares have independent distributions, namely G*(A,X
 ^y) - C2/LX 2, G(X'>)-6E2x2 and G(Y) - 22 Here X' = OX (Section 6). (JLx-1 )m X(Ly- 1 )m Hr
 The F-statistic for testing H0: [.4] = [y] against general alternatives is

 LX+Ly-2 G *(x, j2Y) y) F
 L;'+L~' G(X')GY A m, (Lx+ L,-2)m ~ (14.2)

 14.3. One-way Analysis of Variance
 One-way ANOVA is a simple extension of the two-sample model from two to M) 2

 groups of figures, Xj= (Xl, . . ., XIL) for j= 1, . . ., M. Write j= (j1, = * *,
 Step (d) in Section 10 uses GPA, and statistic (14.2) becomes

 M

 L(L - 1)MG(j)/(M- 1) E G(XJ ) -F(M- 1)m,M(L- 1)m, (14.3)
 j=1

 where Xj' is Xj scaled by equation (8.4). The discrepancy of a factor of 2 between
 statistics (14.2) and (14.3) with M= 2 occurs because G*(X, Y) = 2G(X, Y). The groups
 have equal sizes for simplicity; otherwise the GPA of means involves unequal weights.

 In pooling the covariances we assume that the [Aj ] are close together.
 Two-way ANOVA requires that this last condition holds for both extents of the

 matrix of shapes. When this is met, two-way ANOVA becomes MANOVA in TH,
 where ,u is the grand mean.
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 14.4. Shape Differences Associated with Nutrition
 We analyse landmark data from radiographs of the lateral (sagittal) sections of

 close-bred, pre-weaned male rats 21 days old (Moss et al., 1987), with N= 20 landmarks
 (Fig. 1) digitized for each of L = 10 rats in each of M= 4 dietary regimens. These
 regimens, imposed on the mother, are control, undernourished, undernourished with
 protein supplement and undernourished with carbohydrate supplement. The
 substantive question addressed is 'are differences in shape associated with differences
 in dietary regimen?'. The apparent biological mechanism is that differences in maternal
 diet result in differential rates of growth in the regions of the young rat head, which
 in turn result in different skull geometries. We compare the four samples using the
 two-sample and one-way ANOVA models.

 Table 3 gives details of the generalized Procrustes fit, GPA(INK), for the
 undernourished sample. Fig. 5 plots the Xi' and shows that the covariance differs
 between landmarks. We fit the undernourished sample mean using the three
 covariances INK, IN ? LK, and a) EKj. Comparing the three metrics, there are some
 differences in the superimposition of individual rats, and the sums of squares differ
 by 2-4Wo; for example G(X; INK) is 3.5Wo larger than G(X; e VKj). However, the
 differences between the three means are negligible: the Procrustes sum of squares
 comparing two means is typically 10-5 compared with GPA sums of squares around
 200.

 After computing each sample mean the next step is visualization of differences
 between regimens. With these data the OPA superimpositions turn out to be effective.
 The undernourished rats without supplement tend to have a taller neural skull than
 the control rats. The difference between the protein and carbohydrate supplements
 are localized at either extreme of the skull. The F-ratios comparing treatment to controls
 are 16.2, 17.3 and 7.4; compared with an F-distribution on 36 and 648 degrees of
 freedom each is highly significant. The one-way ANOVA F-ratio for all four regimens
 is 4.9, on 108 and 1296 degrees of freedom, also highly significant. We turn now
 to description of shape differences.

 15. DESCRIPTION AND GEOMETRICAL COMPONENTS OF SHAPE DIFFERENCE

 The description of a difference in shape as an affine transformation from one figure
 to the other is widespread: Bookstein (1984, 1986); Goodall (1983, 1984); Goodall
 and Green (1986); Mardia and Dryden (1989b); Rohlf and Slice (1990). Bookstein
 and Sampson (1990) give estimates and tests for linear (shear) and quadratic
 components of shape change. Goodall and Mardia (1990a) show that with the Gaussian
 model the marginal density of equivalence classes of figures modulo affine
 transformations is multivariate non-central beta.

 Let A: K x K and X' = Xy, A be the multivariate least squares regression fit of X
 to Y. A multivariate affine statistic S., A is defined to be Xy, A - Y double rotated
 to the principal axes of oxr. Then

 (O, i S.K,

 (Se, A) ij = (15.1)
 (S,y, i>K,

 where S is the multivariate Procrustes statistic (11.7) for similarity transformations.
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 or 0
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 Fig. 6. Procrustes (*) and affine (0) superimposition of the control mean on the hydrocephaly mean
 (+): the affine transformation includes perpendicular extensions by factors 1.25 and 0.96, shown by
 the strain cross and ellipse

 Se, A iS orthogonal to X and is the usual matrix of multivariate regression residuals.
 This result establishes a hierarchy of models and tests for systematic differences in
 shape that bridges the ANOVA of Langron and Collins (1985) and conventional
 MANOVA model selection. Shape comparison is the zeroth-order component in a
 hierarchy of deformations: Euclidean/similarity (equivalent to form/shape), affine,
 quadratic .... Apart from the non-linear zeroth-order component these are exact
 multivariate linear model results for Gaussian errors.

 An affine transformation (Goodall, 1983, 1984, 1986; Goodall and Green, 1986) is
 interpreted, via a pair of strain crosses in the figures before and after deformation, as a
 rotation, followed by different strains in the co-ordinate directions, and a final rotation.
 To enhance interpretability the figures are superimposed, so that the K x K affine
 matrix is approximately symmetric and the original and final rotations are complemen-
 tary. For the hydrocephaly data, the control mean is first superimposed on the
 hydrocephaly mean by OPA and then an additional affine transformation is computed
 (Fig. 6). The affine fit involves an extension of 25Wo at angle - 82.40 (before) and
 - 84.40 (after) and a contraction of 4Wo in the perpendicular direction. The decrease
 in the sum of squares, 12.8, is compared with an affine sum of squares, 11.9, by an
 F-ratio on two and 10 degrees of freedom. The F-ratio, 5.36, has the moderate P-
 value of 2.6%1o. The affine fit explains part of the difference between the control and
 hydrocephaly means, but Fig. 4 contains considerable additional graphical information.

 16. DISCUSSION

 Procrustes methods for the statistical analysis of shape are seen to be a viable
 approach to a highly structured but non-linear problem of estimation and inference.
 Inevitably in a new field, the paper leaves many questions only partly answered; we
 consider some of these.
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 16.1. Large Shape Differences and Regression Models
 Cogent discussion of the relationships among shapes that are well separated requires

 some global structure on shape spaces. There are (at least) three approaches to consider.

 (a) The affine transformations of Section 5 are sometimes useful, but more complex,
 or more local, transformations are also needed.

 (b) Specific morphometric features may be of sufficient interest that we linearize
 that projection of shape space; for example in a study of the relative orientation
 of neural skull and facial skull in rats the angle between two major structures
 has primary interest.

 (c) A regression model allows shapes to be compared along the regression curve.

 A regression model for size-and-shape is a generalization of model (5.1). For figures

 Xi, i = 1, . . ., L, and a scalar carrier taking values xi, the model is

 Xi = (it + xi + Ei)fli + INCl)i (61

 where the Ei are random displacements, and A and 6 are respectively the 'intercept'
 and 'slope' matrices for Nx K simple linear regressions coupled by the Euclidean
 transformations (wi, f2i). This model is most attractive when the size-and-shapes of
 t + x6, x e R, follow a geodesic in size-and-shape space, so l + xb is a horizontal
 geodesic in preform space. Goodall (1990b) shows that the condition for this is that

 AT6 iS symmetric but suggests that the unrestricted model is also important.
 A regression model for shape may be written in terms of preshapes Zi and an

 angular variable Gi:

 Zi = (,ucos Oi + ,u* sin Oi + Ei)Qi (16.2)

 where jj f| = It *j = 1, tr(tT/t*) = 0 and Ei is a Fisher disturbance (so jj jj = 1). The
 geodesic in preshape space is horizontal when tT* is symmetric, and again the
 unrestricted model is important. The regression model for shape without
 standardization for scale is obtained by including a term cei in equation (16.1).

 Goodall (1990b) fits regression models for a variety of data, including cases where

 the xi or 0i are unknown, or are unknown low order polynomial functions of a
 metameter ti. A related method is Procrustes analysis of longitudinal data, sampled
 at two or more occasions (Goodall and Bose, 1987).

 16.2. Shape versus Size-and-shape
 Size by itself is a gross, if convenient, summary of a figure. Differences in shape

 are more subtle and multidimensional. However, a figure changes shape when it
 experiences growth that is either non-isotropic or inhomogeneous. Thus both size
 and shape should be included in a physical model. For example, regression model
 (16.1) for size-and-shape appears to be a better physical model than regression model
 (16.2) for shape alone. However, the statistical arguments of Mosimann (1970),
 Sampson and Siegel (1985) and others suggest that shape analysis is valuable even
 when differences in size and shape are important. Procrustes theory for size-and-
 shape is closely parallel to that developed here, but somewhat simpler as the preform
 geometry is Euclidean, instead of the spherical geometry of preshape space.

 16.3. Robust Estimation
 A Procrustes approach to robust estimation involves a choice of weight matrix

 =, N where
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 W= diagtw, ., w2Nl (16.3)
 and w2 is a robustness weight for the ith landmark based on the lengths of the
 residual vectors. Other robustness issues include bounded influence (of distant
 landmarks) and extensions to GPA, in which an entire figure and not simply a single
 landmark may be an outlier. These methods complement the techniques of Siegel
 and Benson (1982) and Rohlf and Slice (1990) based on the repeated median.

 16.4. Comparison of Approaches
 The simplest approach to shape analysis is to assume that shapes have a spherical

 Gaussian distribution in Bookstein co-ordinates. This is a first-order approximation
 to the exact shape distribution obtained from the Gaussian model for landmark data
 with isotropic errors. Using the exact distribution the mean shape can be estimated
 by maximum likelihood, but inference is handled by first-order methods, such as
 Wilks's X. Procrustes methods involve starting from the same Gaussian model for
 landmark data, but treating the similarity transformations as nuisance parameters.
 A different set of MLEs results and inference is again first order.

 There is at present no detailed data to help to choose between the marginal and
 full likelihood approaches. In practical terms, the exact shape densities are relatively
 heavy going, whereas Procrustes methods are more algorithmic. Procrustes methods
 extend relatively easily to more complicated models, such as correlated landmarks,
 non-isotropic errors, ANOVA, longitudinal data and regression. These extensions
 recognize the non-linearity' of shape spaces: the MLE of the mean shape [I] is
 computed exactly even from widely dispersed data (although the Gaussian model for
 landmark data may become questionable), but in a two-sample comparison (or more)
 the mean shapes should be sufficiently close to pool the covariances. In ANOVA
 all the subsample mean shapes must be close together. Similarly, the shapes must
 be concentrated for the analysis of paired data.

 When fewer than N landmarks are used for superimposition, the estimates of ('y ,
 fi, Fi) are less precise, and the sum of squares about the mean may increase
 markedly (Fig. 3). Intuitively, with N landmarks there are N/2 independent estimates
 of the (-yi, i3, Fi) using edge superimposition. However, the differences between
 superimposition methods are second order only: to first order, superimposition removes
 the geometrical structure of each figure and allows it to be analysed as an m-vector
 in the Procrustes tangent space. With the data thus arranged as an L x m matrix,
 the mean is simply the column averages. However, the tangent spaces differ only to
 second order, and, by orthogonality, the column averages are the same whether row
 effects have been removed using all or only some landmarks.

 More complex issues arise when the covariance is estimated from the data. Procrustes
 methods provide MLEs and first-order inference as usual, but their relative merit
 compared with simply estimating the covariance of Bookstein's shape co-ordinates
 from data is not known.

 16.5. Concluding Remarks
 Shape spaces EN for figures other than triangles are complicated. We have shown

 that practical statistical models and techniques for the statistical analysis of shape
 data can be constructed in Euclidean space. The approach of this paper is to work
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 in figure space, with nuisance parameters for unknown similarity transformations.
 In place of a metric directly on shape space we use the Procrustes sum of squares
 between figures. For both the hydrocephaly and the nutrition data, the choice of
 superimposition metric does not appear crucial, but for efficient estimation and testing
 we prefer GPA in which the model metric coincides with the superimposition metric.
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 DISCUSSION OF THE PAPER BY GOODALL

 D. G. Kendall (University of Cambridge): This is the first time that the Society has turned its attention
 to shape theory, and we are lucky to have such a solid contribution from Colin Goodall. As it is rather
 complicated I shall not go through the paper in detail, and happily it fits in better with my inclinations
 to describe a recent development illustrating a fruitful rule of procedure: let the geometry do all the
 work so far as is reasonably possible.

 I begin with the problem of deciding whether a given set of points in the plane contains 'too many
 near collinearities'. Fellows will recall a famous paper on this topic by Broadbent (1980). There for
 the most part it was three-point collinearities that were studied, with an angular criterion for near
 collinearity. That angular criterion can behave very badly when two or more points are close together,
 and moreover it has never been clear how it ought to be generalized when the points are taken k at
 a time and k exceeds 3.

 I here present a new method that is free from both disadvantages and outline its use when assessing
 four-point collinearities in the plane. The extension to k points is straightforward, though the graphics
 are then more complicated. The extension to three or more dimensions presents new features that I
 shall not enlarge on here.

 The shape of four not wholly coincident labelled points in the plane is represented by a point in a
 certain complex projective shape space that is four dimensional, and when the four points are collinear
 then the shape lies in a two-dimensional submanifold that is the projective 2-sphere obtained by identifying
 antipodal points on an ordinary sphere of radius 1.

 Recently my colleague Hui-ling Le has determined the global geodesic geometry in the shape space
 Ek for k points in m dimensions, making a special study of the cut-locus phenomena, and also of the
 geodesic projection from an arbitrary shape onto the submanifold 9 of dimensionally deficient shapes
 ('collinear' shapes when the basic dimension m is 2). Thus, in the example considered here, 9 is the
 projective 2-sphere.

 On specializing her general theorems to the present problem we are led to a natural numerical measure
 of non-collinearity that I shall call L. This is a simple increasing function of the length of the geodesic
 petpendicular dropped from the current shape point in the shape space onto the submanifold 9, and
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 associated with it there is an ancillary statistic M that locates the position of the foot of that geodesic
 perpendicular in the manifold 9, thus determining the nearest approximating shape that is dimensionally
 deficient. So in the present context L tells us how far from collinearity the tetrad is, while M gives the
 best collinear approximation.

 My colleague has proved that, when the k points are independently and identically distributed Gaussian
 in the plane, then

 (a) L has the uniform distribution on the unit segment,
 (b) M has the differential geometric uniform distribution on the submanifold 9 of approximating

 collinear k-ads and
 (c) these two statistics are mutually independent.

 Thus we can regard the observed L as the appropriate test statistic for the collinearity problem, while
 M is an important and geometrically natural ancillary. Let us see what happens when we apply these
 ideas to the analysis of tetrads of points drawn from a real data set in two dimensions.

 The domain 9 is now a projective 2-sphere (Fig. 7). We can throw half of this away and map the
 resulting hemisphere with antipodally collapsed boundary onto a cylindrical sleeve while preserving both
 independence and uniformity (Fig. 8). As we do not here care about the labellings of the points, the
 projective space can be decomposed into cells that are for us equivalent, and so we can work in any
 convenient one of these-here shown in the sleeve projection as the large spherical triangle (Fig. 9).
 The smaller spherical triangle (with a broken line boundary) will play an important role to be described
 in a moment.

 At the boundary of the large spherical triangle at least two of the points of the tetrad coincide, while
 at its vertices there will be multiple coincidences. Such special cases (and near approximations to them)
 hardly represent what we think of as collinearities, and so we need to look at the central region of the
 large spherical triangle to find the true collinearities, if there are any.

 Now the ancillary statistic M (position within the spherical triangle) determines the best fitting collinear
 tetrad, while the test statistic L tells us how far from collinearity the original tetrad is. Thus it becomes
 sensible to plot for each candidate tetrad, at the location specified by M, a marker symbol indicating
 a) quantized value of L. In this example a shaded square indicates a very small value for L, while a
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 cross indicates an L-value up to 100 times greater. We then obtain a single diagram containing all the
 relevant information presented in a readily assimilable form. Of course we have taken the opportunity
 to clear away (by not plotting them if L exceeds the cut-off) those tetrads that are nowhere near to
 collinearity.

 You will see that in this data set of 52 points (Broadbent's data) there are just four tetrads that are
 collinear to the standard currently being set (indicated in the diagram by four shaded squares). In fact
 the associated histogram for the L-values makes it plain that this number is not significantly large in
 relation to the numbers in the 100 nearby histogram cells.

 We have not exhausted the geometric possibilities, however. There is further valuable information
 contained in the empirical distribution of the ancillary statistic M.

 In the example shown you may have noticed that the spots marked by crosses are far from being
 uniformly distributed. Instead there is a tendency for them to be concentrated near the three corners
 of the large spherical triangle. This is a consequence of the fact that the empirical data set being used
 just happened to consist of two fairly distinct patches. The diagram is signalling that important fact
 to us in case we have not already noticed it.

 Actually we are seriously concerned only with the shape points that fall in the smaller spherical triangle
 bounded by a broken line. This spherical triangle is defined by the requirement that each shape point
 therein represents an (ordered) linear tetrad ABCD satisfying an inequality of the form

 min(AB, BC, CD) is bounded below by AD/5.

 The choice of 5 as the divisor is somewhat arbitrary, but it seems reasonable. The inequality is to ensure
 that we do not overestimate the significance of a tetrad merely because it consists of three nearly collinear
 points and a fourth point close to one of these.

 In fact the four very nearly collinear tetrads that we noticed in Fig. 9 all lie outside the central region
 delimited by the broken line (though one of them could be described as a 'near miss'). So that is another
 reason for not taking them too seriously.

 Another attractive possibility would be to plot the data on an (L, R)-diagram, where here R is a
 uniformly distributed increasing function of the shortest geodesic distance on 9 from M to the boundary
 of the large spherical triangle, so that then the best candidates for serious near collinearity would have
 a small L and a large R. This last procedure will work for every value of k.

 When such geometric viewing of the data lends support to the possibility that there may be causal
 factors generating close collinearities, then we can proceed to a numerical statistical analysis using the
 data-analytic techniques introduced by Wilfrid Kendall and myself in response to Broadbent's paper
 (Kendall and Kendall, 1980).

 I hope that I have persuaded you how attractive this technique can be, if we push the algebra and
 analysis into the background and focus on the geometry.

 It gives me much pleasure to propose the vote of thanks to my friend Colin Goodall. To prospective
 readers of the literature I add a word of caution: Professor Goodall's notation is different from that
 used in the series of theoretical papers on these topics dating from 1976, so care is necessary to avoid
 confusion.

 John T. Kent (University of Leeds): Procrustes analysis forms the basis of an elegant and unified technique
 for the analysis of shapes from landmark data. However, many complications and variations arise in
 the presentation of the theory. Therefore it is useful to stand back for a moment and to ask what are
 the key ideas behind the application of Procrustes analysis in practice. I shall address these issues in
 the simple setting of defining an 'average shape' for collection of configurations in K= 2 dimensions.

 First I shall describe an alternative way to calculate a Procrustes average by using complex numbers.
 Represent a centred and scaled configuration of N landmarks by a complex vector z = (z1, . . *, ZN)T,
 satisfying zi = 0, and E I z 12 = 1. Remember that ei0z, the rotation of z in the complex plane by an angle
 0, and z represent the same shape. Next consider a collection of configurations [zj: j = 1, . . ., LI in
 CN. A statistic which is invariant to rotations in the complex plane is the Nx N complex sum of squares

 and products matrix, Ezjzj* = T, say. After some simple algebra, it turns out that the Procrustes average
 in Goodall's equation (2.5) is equivalent to the dominant eigenvector of T. There are links with a complex
 version of the Bingham distribution from directional data analysis and with principal component analysis.
 Unfortunately, this approach does not seem to generalize to K> 3 dimensions.

 Next I would like to comment on the various ways in which an average shape might be defined. For
 example, we might use Goodall's equation (2.4) or (2.5) or Bookstein's (1986) co-ordinates, or the marginal
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 likelihood approach of Mardia and Dryden (1989a, b). Now in many applications shape data tend to
 be highly concentrated. After a little analysis, it turns out that all the methods listed here are asymptotically
 equivalent to one another to first order under high concentration. Further, the introduction of a more
 general covariance structure in any of the above approaches will make no difference, to first order.
 The reason that the covariance structure makes no difference is clear from the multivariate normal
 distribution, where the estimate of the population mean is the sample mean, regardless of the value
 of the covariance matrix. Therefore, it is important to emphasize the similarities between methods for
 constructing shape averages rather than to focus solely on their differences.

 Lastly I would like to address the wider question of modelling shape by landmark methods. In many
 applications we start not with a set of landmarks but with a continuous outline of an object in the plane.
 This outline can be represented as a smooth function f(t): [0, 1] -+R2. Here t might represent arc
 length, but other parameterizations may also be useful. From this functional point of view a natural
 comparison between two curves f and g can be defined in terms of the integrated squared difference

 11 f(j) (t) - g(m) (t) 112 dt

 between the function values themselves (m = 0), or their mth-order derivatives. f and g need to be registered
 with respect to one another, and care is needed in matching the meaning of t between f and g.

 Unweighted Procrustes analysis can be viewed as a discrete approximation to this integral with m = 0.
 However, a larger value of m may yield a measure more sensitive to small bumps etc. in the outline.
 Some related ideas on the use of Markov models for outline data can be found in the work of Chow
 et al. (1988) and in Dryden and Mardia (1991). Further, the choice m = 2 is related to curvature, which
 I believe my colleague Professor Mardia will discuss later.

 I am not entirely happy with the use of unweighted Procrustes analysis (m = 0) for the analysis of
 outline data because it takes no account of the fact that consecutive landmarks will be near one another
 in the outline. The use of derivatives overcomes this objection, but more work is needed to see how
 feasible the ideas will be in practice. Presumably this 'ordering' information can be incorporated in
 a weighted Procrustes analysis by a suitable choice of EN. A rather different approach to take into
 account the layout of the landmarks in the analysis of shape change was given by Bookstein's (1986)
 biorthogonal grids in which shape change was modelled by a deformation of R2.

 As you can see I have found the paper very stimulating and exciting. It gives me great pleasure to
 second the vote of thanks.

 The vote of thanks was passed by acclamation.

 Kanti Mardia (University of Leeds): I find the paper quite an important contribution to shape analysis.
 First, I would like to comment on the assumptions made in the paper. It is assumed that the number
 of landmarks and their locations [xtJ, t = 1, . . ., N, are known a priori. This may not always be true
 in practice and Mardia (1990) describes a curvature function method (for shape outlines) to obtain
 landmarks based on work with Ian Dryden. The factored covariance matrix may not be applicable in
 general; see Dryden and Mardia (1991) for a practical example. Also, the covariance matrix, at least
 for large N, should incorporate the neighbourhood structure of landmarks. For K= 2, a suitable model
 with population means sit iS

 [ x t - t= circular bivariate AR(p).

 (In particular, the covariance matrix can be factored.) The advantage of such a model is that realistic

 shapes can be simulated easily. For deformable templates one models derivatives xt - xt-Il in this fashion
 (Chow et al., 1988; Gough and Mardia, 1990); our approach differs from Chow et al. (1988) on various
 points of detail.

 Contrary to the author's comments in Section 5, as far as I can see, the full and marginal procedures
 are based on the same assumptions. In particular, the marginal approach does not require a constant
 co-ordinate system. I agree that the computational burden increases rapidly with N for the marginal
 approach. However, convenient co-ordinate systems exist on shape space, e.g. W in Goodall and Mardia
 (1990a), which facilitate the direct examination of data and calculation of summary statistics such as
 the mean vector and covariance matrix. Also, for cluster data in any dimension, the marginal likelihood
 estimators will be approximately the same as the sample mean vector and covariance matrix, provided
 that we keep away from the singularities of the co-ordinate system.
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 In on-line gesture recognition, one wants to discriminate between hand-drawn shapes by using a mouse
 on a computer. Here, the shapes are identical under non-linear scaling, e.g. for the operation 'transpose'
 the following objects represent the same command:

 Thus, the work involves non-linear scaling and we require an extension to the existing shape theory.
 For the above shape, the obvious landmarks are corners and appropriate angles can be shape variables
 but this is not true for other shapes (Mardia et al., 1990).

 I look forward to seeing applications of Procrustes and other techniques in three dimensions, e.g.
 object recognition in computer vision.

 W. S. Kendall (University of Warwick, Coventry) and H. L. Le (University of Cambridge): We
 congratulate the author on a paper which we found very stimulating.

 It would be useful to summarize differences between shapes of labelled k-ads in terms of differences
 between shapes of triads obtained from the k-ads via (appropriately restricted) affine combinations of
 vertices selected in some optimal fashion. This would make available the spherical blackboard of
 D. G. Kendall for display of 'the most prominent change of shape'; moreover the affine combinations
 forming the representative triads could be displayed as weightings of the landmarks making up the original
 k-ads. We have begun to think about representations which might be suitable in terms of being economical,
 visualizable and interpretable.

 So far we have made only small progress with this idea. Our starting point was a fact pointed out
 by Goodall to one of us: consider the geodesic defined by the change of shape from one labelled k-ad
 to another, and project down to the sphere 3 by selecting three combinations of points. Except in
 degenerate cases, the locus of the projection (but not the projected curve itself) forms an arc of a small
 circle on 2

 For data analysis we must make an optimal selection. Options include making the locus as great a
 circle as possible, or maximizing the resulting change of triad shape. But (if k> 4) there are selections
 for which the triad remains of constant shape and so the first option yields a poorly posed problem.
 The second option is a little more promising (especially since the interpolating small circle can be added
 to the resulting diagram). It is related to an optimizing problem, reminiscent of both Procrustes and
 canonical correlation analysis, which we are investigating.

 Finally, we comment on three points of detail.

 (a) W. S. Kendall's use of the singular value decomposition actually arises in the sequel (Kendall,
 1990a) to the paper referred to by Goodall.

 (b) The mean shape is an instance of a generalized notion of expectation due to Fr6chet (and previously
 E. Cartan), which has recently been applied to the probabilistic theory and non-linear partial
 differential equations (Kendall, 1990b).

 (c) There are yet more general notions of shape. Ambartzumian (1990) introduces the affine shape
 of (for example) a tetrad of points in the plane.

 J. C. Gower (University of Leiden): Everyone is agreed that similar figures have the same shape and
 I welcome Professor Goodall's paper that provides an inferential structure for testing similarity.

 I shall say something about alternative geometries for representing shape change and something about
 the measurement of shape itself. The co-ordinate matrices Xi generate sets 4, 9 and g whose members
 are matrices of distances Ei, of square distances Dj and of inner products Bi. Matrices E, D and B,
 corresponding to the Procrustes group average X, belong to these sets. All sets are invariant to
 orthogonal transformations and 9 and 4' are also invariant to translations. 4' is the natural space for
 studying distributional effects when lengths are measured rather than landmark co-ordinates but, unlike
 9 and M, is not convex. Take the subdiagonal elements of any of these matrices as co-ordinates of
 points in at most n(n - 1)/2 dimensions and labelled E, Di, Bi (= 1, . . ., L). The average matrices
 E, D and B form useful summaries and a conical projection of D onto an edge of 9 gives the group
 average of individual differences scaling (Carroll and Chang, 1970). L xL matrices formed from the
 distances between pairs of points in 9 or 4, or from pairwise Procrustes statistics (Gower, 1970), may
 be displayed by multidimensional scaling methods to reveal patterns among the L configurations (e.g.
 clusters or trends); this approach might be useful with the rat data. The points can be constrained to
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 represent matrices of constant size by scaling 1 'Dil = n, so that the Bi and Di lie on hyperplanes orthog-
 onal to lc and the Ei lie on a hypersphere; normally E and D do not lie within these constrained spaces.

 The generalized Procrustes analysis statistic m2 may be written geometrically,

 nm2 = EEE2 + (OE2 - OE2),

 and algebraically,

 nm2 =(1'Di1)/L-1'Dl=1'(D-D)1.

 In general F and E do not coincide and E may not even represent a distance matrix; nevertheless the
 result suggests that E is close to E. 9 is convex so certainly contains D, and m2 is the projection of
 D-D onto the central ray 1c. When the Xi are centred at their centroids, i is polar to 3 (Critchley,
 1986) and, because 1' Bi1 = -1' Di1 /2n, similar geometries hold in i and 9. Distances in the two
 spaces are linked by the expression

 E (dw)2 - d(2)2)2 = 4S(b5(k)2 - b(2))2 +(n+2)a2aj+ (E aj)2

 where aj MP - b2). With standardization, E MP_= E bl>), so that aj=0. If further bMP = b.2), then
 distances in the two spaces are equivalent. The bjj give the squared distances of the landmark points
 from their centroid and may be isolated and analysed as measures of what might be termed size-shape.

 Then 137/2Bi,l"/2 with fi= diag(Bi) represents purely angular-shape. Non-centroid origins, such as
 the generalized circumcentre (Gower, 1985) or the mediancentre, define useful B-matrices.

 However, shape differences are often localized, so global measures of shape are suspect.

 Ian L. Dryden (University of Leeds): Procrustes techniques in Euclidean space suggest analogous
 models in the shape space E', and I shall concentrate on the important K=2 case. Consider the
 following densities, with respect to Kendall's (1984) uniform measure in E2:

 aN(x) exp{x cos(2a)j, (1)
 bN(x) exp(4x cos a), (2)

 IF, [2-N; 1; -xfl+cos(2a)j] exp{xcos(2a)-xJ, (3)
 where 0 < a <r/2 is the Riemannian distance from the population shape; x > 0 is a concentration
 parameter, IF, (c; d; x) is the confluent hypergeometric function (a terminating series above) and

 a-1 (x) = exp(- x)1 F, (1; p - 1; 2x),
 bI (x) = 1 + [I r (2x)5/2 N(N- 2)! VIN- 3/2(4x) + LN_3/2(4x)j],

 where I( ) and L( ) are the modified Bessel (first kind) and modified Struve functions. If N= 3 then
 a3 = x/sinh x and b3 = 8x2/{1 - exp(4x) + 4x exp(4x)3.

 The maximum likelihood estimate (MLE) of shape using expression (1) is the same as the Procrustes-
 with-scaling mean shape defined in ecuation (2.5) of the paper. For N= 3 expression (1) is the density
 of the Fisher distribution on S2( ), used by Mardia (1989a). The MLE of shape using expression
 (2) is the same as the Procrustes-without-scaling mean shape defined in equation (2.4). Thus, the two
 Procrustes approaches can be compared with the marginal likelihood approach (Mardia and Dryden,
 1989a), where the shape density under the isotropic Gaussian model is expression (3).

 All three distributions are asymptotically normal as x-+ oo and uniform if x = 0. The three densities
 are very similar for much of the range and in practice the models give similar shape estimates. However,
 expression (2) has particularly light tails and so the Procrustes-without-scaling estimate will be the most
 affected by outliers.

 Professor Goodall and I have empirically compared the Procrustes and marginal MLE shape estimates
 for some moderately dispersed data (p. 300). In Fig. 10 the shapes of triangles from 20 neural spines
 of T2 mouse vertebrae are given, together with various shape estimates, in Kendall's shape co-ordinates
 {Re(u*), Im(u*)3. For these data the Procrustes-with-scaling estimate (0.0934, 0.9799) and marginal
 shape estimate (0.0885, 0.9838) are almost identical, the Procrustes-without-scaling estimate (0.0653,
 1.0017) is similar but Bookstein's (1986) arithmetic mean (-0.1086, 0.8315) is appreciably different.
 This example suggests that the difference between the so-called 'full' and marginal MLE is negligible
 for practical purposes.

 The marginal MLE approach can also be extended to general covariances for K= 2 dimensions (Dryden
 and Mardia, 1991). Like the Procrustes shape estimates for the rat data in Section 14.4, the marginal
 shape MLE is not greatly affected by the choice of covariance structure, if variations are small. However,
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 Fig. 10. Shapes of 20 T2 neural spine triangles(+ in Kendall's shape co-ordinates, with the Procrustes-with-scaling
 E m), Procrustes-without-scaling (A ), marginal MLE (x) and Bookstein's mean (*) shape estimates

 care must be taken with inference unless the covariance structure is simple. The major problem is that
 singular landmark distributions can lead to non-degenerate shape distributions. Are the general Procrustes
 methods of Section 10 easy to work with?

 Alistair Walder (University of Leeds): I would like to make a comment relating to Sections 5 and
 6, extending the Gaussian and the two-sample model. With Professor Mardia I have been looking at
 the joint shape density of two figures in R , X and Y say, which are correlated over time. (For example,
 consider X-rays of the same patient taken at different occasions.)

 Our model is simple:

 X=it + Ex,
 Y= y Ey;

 cf. equations (6. 1) and (6.2); our approach is 'marginal' in the sense of Section 5. No attempt is made
 to estimate the translation, rotation or scale. However, the model for X and Y also differs in that Ex
 and Ey are not independent. Let e be the 4Nx 1 vector obtained by unstacking the columns of Ex,
 then Ey (both N x 2). We assume that e -N(0, E~) and that E can be factorized, as in Mardia (1 984)
 (where the sites are now landmarks) or this paper, as

 a2 0pal u2sin ~
 0 a I ~~~-pal u2sini palor2cos ~

 pu1u2cs ~,& -pal or2sin a2 0 ?8 IN~
 pal u2sin ~ PUI U2 COS 0 '

 This includes the minimal assumptions necessary for a sensible model. We assume independence between
 landmarks within figures, corresponding landmarks are correlated and perturbed similarly over time
 and the angle ~P accommodates the rotation of base edges involved in edge superimposition.

 Despite these simplifying assumptions the resulting distribution is not aesthetically pleasing but can
 be written in closed form. It is then not surprising that our marginal maximum likelihood estimates
 h~ave to be estimated numerically.
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 I would like to finish by asking Professor Goodall whether Procrustes methods can be easily extended

 to correlated figures.

 Toby Lewis (University of East Anglia, Norwich): I wonder whether Professor Goodall has considered
 a shape problem of prime practical interest to palaeomagnetists, the analytic comparison of apparent
 polar wander paths (APWPs). This falls between the landmark situation and the situation discussed
 by Professor Kent and Professor Mardia where there are curves or outlines.

 Suppose that we take some rock specimens, say in Australia, and obtain from each specimen an estimate

 of the position of the palaeomagnetic pole as it has moved around over hundreds of millions of years.
 If the ages of the specimens can either be estimated or at least ranked, the positions can be represented
 by a time-ordered sequence of points on the surface of a unit sphere, forming a path-an APWP.
 Fig. 11 shows an APWP for Australia (adapted from Embleton et al. (1983)). If the same is done in
 Africa or North America, the same path should be obtained, apart from noise. One reason why it is
 not is because the continents have moved relative to one another over geological time. What rotation
 will bring the two paths into best alignment (whatever 'best' may mean), and after this rotation are
 the paths reasonably consistent (on some criterion)? Fig. 12 (same source as Fig. 11) shows an APWP

 B

 Fig. 11. Data set for Australia

 z y

 Fig. 12. Data set for North America

 x

 Fig. 13. Pooled data set
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 for North America after rotation to match the data in Fig. 11. The statistical problem takes various
 forms according to the information available. In the case illustrated here, only the separate chronological
 orders for the two sets of pole positions are known, and not the actual ages or even the pooled
 chronological order. The data points in Figs 11 and 12 are not landmarks because they do not correspond
 in pairs; in fact, there are unequal numbers of points in the two data sets. Fig. 13 (same source) shows
 an APWP based on the combined information; path ABC in Fig. 11, for example, is replaced by path
 AXBYZC in Fig. 13 because there were no Australian observations for the times covered by North
 American data points X, Y, Z.

 There are many such problems in APWP analysis. I would like to ask Professor Goodall whether
 he has already dealt with this kind of problem and what his words of wisdom about it are.

 D. Stoyan (Bergakademie Freiberg) and H. Ziezold (Gesamthochschule Kassel): We congratulate
 Professor Goodall on his excellent paper. Also we believe that the use of Procrustes methods is indeed
 of very great value for shape and form statistics. We have used Procrustes distances as a starting point
 for cluster analysis (Stoyan, 1990a) and multivariate scaling.

 In particular we are impressed by the theory of Gaussian landmark models with non-independent
 and non-spherical displacements. In own studies of shapes of hands we found that the original Bookstein
 model (with independent and identically distributed (IID) spherical displacements) is quite unrealistic
 for modelling the intrapopulation variability (Stoyan, 1990b). This paper shows that statistical methods
 for the x-distribution permit the direct estimation of the distances of landmark centres and the
 corresponding variances. The more general models suggested in Section 5 look very promising.

 Are there biological objects for which the original Bookstein model is a good model for the
 intrapopulation variability and not for measurement errors only?

 The determination of mean shapes and forms is a very important problem for practical data analysis
 of shapes and forms. These Procrustes means are merely examples of Frechet's definition of expected
 elements of random elements in metric spaces (Ziezold, 1977). Ziezold has proved a strong law of large
 numbers for IID elements in a separable metric space thus giving a deeper mathematical justification
 for these means. In the same paper he applied the theory to samples of forms and showed some elementary
 properties. Furthermore, he analysed Gower's algorithm for simulated samples experimentally (Ziezold,
 1989). Like Professor Goodall, he found that in practical important cases the algorithm needs only
 3-5 iterations. But if, for example, the sample consists of many figures which are generated by three
 points independently chosen by the uniform distribution in the unit circle, the limit of the then very
 slowly convergent algorithm also depends on the starting figure. The main limits are

 (a) a triangle with two points near together and
 (b) a nearly collinear triangle with one vertex near the arithmetic mean of the two other vertices.

 As far as we know, general mathematical criteria for the convergence or even for the speed of the
 convergence of the algorithm have not yet been found.

 We should also like to know the behaviour of the Procrustes mean shapes or forms for L- +o in
 the Bookstein model. In general, these means are not unbiased estimators of the shape or form generated
 by the expected points.

 Trevor Hastie and Eyal Kishon (AT&T Bell Laboratories, Murray Hill): With M. Clark of Monash
 University, Melbourne, we have been developing a statistical model for signatures. As part of the definition

 (a) (b) (c) (d)
 Fig. 14. (a) Mean S (bold) corresponding to L = 3 renditions of Suresh's signature witH N= 100, together with the
 three projections Y1A ,=Q,Q,T?; (b)-(d) individual signatures, together with their modelled versions fY=SA,-'
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 (a) (b) (c) (d)
 Fig. 15. (a) Smooth mean signature (bold) with the projections of the three contaminated signatures superimposed;
 (b)-(d) individual contaminated signatures, together with their smooth modelled versions

 of the mean signature of an individual, we (independently) arrived at an expression similar to expression
 (2.1). Here we outline a simplification achieved by relaxing the assumptions underlying expression (2.1),
 as well as a 'smooth' version thereof (Figs 14 and 15).

 Suresh signs his name L times on a pressure pad, which samples the co-ordinates and pressure of

 the pen 1000 times a second. Assume that we have (centred) signature matrices Yi, i= 1, . . ., L, each
 of dimension Nx 2 and representing N corresponding points from the leading S of the signatures. We

 refer to these subsampled Yi as the 'signatures'.
 Similar to Gower's (1975) definition (2.1) and (2.5) in the paper, we define the average (preshape)

 signature S to be the minimizer of
 L

 Z1 YiAi-SH12 (4)

 over SNX2 and Ai but allow the Ai to be general 2 x 2 matrices. The Ai allow for the deformations that
 Suresh might make to his S in different renditions of his signature, including shearing. To avoid
 degeneracies we impose the constraint ST S =I (for convenience).

 Problem (4) has a simple solution that does not require iteration. If Yi = QiRi is the QR
 decomposition of the ith signature, then the optimal Ai is Ai = R-' QTS and hence YiAi= QiQ[TS. So
 at the minimum expression (4) is

 L L

 Z jj(Q1Qf-I) S j2J =JE tr(STM,S)

 =L tr(STMS)

 where Mis the average of the residual projection operators M = (I- QiQT). Since each of the Mi are
 symmetric and non-negative, so is M. Minimizing tr(SrMS) subject to STS=I is a well-known
 eigenvector problem, with solution S a basis for the eigenspace corresponding to the two smallest
 eigenvalues of M.

 Typically the rows of the Yi are sampled at equal arc lengths along the signature, which is a smooth
 curve, and so they define a smooth (discrete) curve parameterized by the index set 1, . . ., N. Usually
 this results in a similarly smooth mean S. The Yi themselves may be smooth curves contaminated with
 noise. These and other considerations motivate us to consider a smooth generalization of problems (2.1)
 and (2.5), and our problem (4). S will be a smooth curve if each of its columns is smooth. We can
 achieve this by augmenting problem (4) with a quadratic roughness penalty of the form X tr(STQS);
 one candidate for QNXN is the integrated second squared derivative matrix corresponding to a smoothing
 spline (as in Rice and Silverman (1991)). In our case the solution for S is then a basis for the eigenspace
 corresponding to the two smallest eigenvalues of LM+ XQ. Fig. 15 shows the same signatures as in
 Fig. 14, but contaminated with noise.

 Christopher G. Small (University of Waterloo): I would like to pick up the point from Section 16
 that the exact shape densities are 'heavy going'. This is undoubtedly true, but many avenues remain
 open. For example we could use Laplace approximations to calculate shape densities for quite general
 models. Consider a set x = (xl, . . . , xn) of independent planar landmarks with the ith landmark xi
 centred at ui. We suppose that the landmarks have common error distribution with density f around
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 their respective centres .i,. In Bookstein shape co-ordinates z = (z1, ..., Z-2), the induced shape density
 f(z) is a twofold integral over complex co-ordinates. Let x=(ui, ui+ v, u+vz1, . . ., u+vzn2) be a
 translated, rescaled and rotated version of x such that (ui, vi) maximizes the value of

 n-2

 g(u v) = ||V||2n-4 f (-fl) f(U + V - 12 H f(u+Vzi-i+2).
 i=1

 Then the Laplace approximation to the shape density is given by
 n-2

 f(z) -47 +l( IL-Xlvlt4fUF)( -2) (U+ Vi/Li+2)
 i=l

 where A is the 4 x 4 Hessian matrix of log g with respect to the co-ordinates u, v. The computation
 of the determinant of A is tedious but can be done with symbolic packages such as MAPLE. This task
 can be simplified if the (u, v)-co-ordinate system can be reparameterized to give orthogonal co-ordinates.

 Now suppose that we let the vector of means jt = (IL, ...., p.n) be an unknown parameter. We might
 suppose that p. lies in some constrained family of configurations, and that the intention is to match
 the shape of the data to some lower dimensional constrained family of shapes (much as in regression
 where one constrains the estimated response to fall on a straight line). Maximum likelihood can be used
 and the approximate density can be maximized over the constrained space of values of p. As the Laplace
 approximation involves the maximization of g in x it is natural to maximize jointly in (x, p.) rather
 than solving for x first. The result is an extension of Procrustes techniques to models with a general
 error structure. In principle, the Laplace approximation can be accomplished for data in any dimension.
 However, for landmarks in dimensions higher than 2 we lose the advantages of complex arithmetic
 which make the formulae simple.

 The possibility of approximating shape distributions should not deter us from calculating these
 distributions exactly whenever possible. In some cases the integrals can be computed exactly. Among
 such examples the distribution of shape for the vertices of Delaunay simplexes of a Poisson process
 is particularly elegant.

 The future of shape theory will inevitably require much more sophisticated models than those in which
 landmarks have independent errors. I am reminded that statistics has been largely concerned with the
 estimation of location and dispersion for much of its history. However, these parameters are finite
 dimensional. Everything that remains is shape.

 The following contributions were received in writing after the meeting.

 John Bacon-Shone (University of Hong Kong): Professor Goodall's paper is very valuable in that
 it sets out a general structure for the analysis of shape problems. However, I believe that there are
 important classes of shape problems, for which his approach, as it stands, may not be the most
 appropriate. For example, in his rat skull example, there is information in the ordering of the landmarks.
 It is possible that the major point of interest is the interpoint distances of successive landmarks (or
 some other subset of the interpoint distances). In this case the most appropriate strategy would be to
 use compositional data analysis (Aitchison, 1986) to look at the interpoint distances relative to the sum
 of the distances. Conversely, it could be argued that what is of interest may not be the interpoint distances,
 but rather their complement in shape space, i.e. the variation in orientation of the landmarks, once
 variation in successive interpoint distances is taken into account. This can be done by regressing the
 standardized landmarks on the vector of log-ratios of interpoint distances. A nice example of when
 this idea may be of use is in assessing the gait of children via landmark data on joints taken over time
 for many different children. In this case, it is of interest to know the extent to which body orientation
 is determined by bone lengths. I am currently investigating this together with a physiotherapist.

 Fred L. Bookstein (University of Michigan, Ann Arbor): In morphometrics, the interpretation of
 sample variation in shape space is inseparable from the geometry of the mean shape. Morphometric
 explanations are governed by two descriptive languages at once. One description deals with global aspects
 of change, measured via first derivatives, the other, with local aspects (contrasts between patterns in
 groups of landmarks at greater or lesser separation), measured via second derivatives. The affine subspace
 Goodall mentions supports a global (first-derivative) metric, e.g. anisotropy, the complementary subspace,
 an incommensurate second-derivative metric (e.g. some analogue of 'bending energy'). This decomposition
 of directions in shape space depends strongly on the mean shape. But in Procrustes analysis the geometric
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 properties of shape space are almost independent of the mean form as long as we stay away from the
 collinearity set. Furthermore, statistical space is rotatable (up to a covariance structure) near the mean
 form, but in biological applications it is not meaningful to rotate between the two subspaces.

 So for applications in morphometrics Procrustes analysis is not only scientifically inefficient (in
 discarding the crucial information about means) but also is mired in an inappropriate algebra of spaces
 and their descriptors. The metric that Goodall claims is 'natural' is not for several traditional biometric
 purposes. For example, the principal components of a sample in shape space must be taken in two sets:
 one pair within the affine subspace, and another set, in the complementary space, that emerges in order
 of geometrical scale. Analysis of data for growing rats indicates considerable independence of trends
 and regulatory precision in these two subspaces over normal growth. To understand the processes by
 which they grow, then, the descriptions, and hence the metrics underlying, must be kept separate.
 Similarly, the idea of any unitary regression in shape space presumes one single metric in which the
 residuals should 'naturally' be minimized. There being no such metric, regressions must be carried out
 in both of these subspaces, and the results then combined via a covariance structure.

 Contrary to Goodall's suggestion, metrics for understanding the natural world arise only in nature,
 not in the mathematics of lower triangular matrices. Living organisms know, as the algebra of the QR
 decomposition does not, that adjacent landmarks covary for different reasons than landmarks at a
 distance. Therefore, although Goodall's method can be made to yield fully efficient tests of mean
 differences in designed experiments, I would not apply it in any more subtle sort of biometric investigation.
 It is not statistical science. The geometry of shape analysis for organisms is bound up with the details
 of the mean form in a manner for which the notation of Cartesian product covariance matrices in a
 single metric is remarkably ill suited.

 Frank Critchley (University of Warwick, Coventry): I would like to comment on two points, and
 then to note some related work.

 Distance geometry
 I agree with Professor Gower that, among other possibilities, it is natural to consider appropriate

 invariants directly when analysing shape. In particular, the Nx N matrix of squared Euclidean interpoint
 distances D takes out location and orthogonal transformation while, trivially, multiplication by the
 appropriate constant takes out scale. The geometry of the closed convex cone D of all such matrices
 then comes to the fore. In certain respects this geometry is pleasingly simple. The question, then, is:
 which geometry is better for which statistical analysis?

 Degrees of freedom
 The many-faceted nature of shape is reflected in the large number of degrees of freedom in the test

 statistics described in Section 14. Two obvious and complementary questions arise.

 (a) Can the overall test statistics be decomposed into preferably orthogonal parts, each having a clear
 interpretation?

 (b) Against which more specific alternative hypotheses does the test of equal shape have greatest power?

 An orthogonal decomposition introduced in Critchley (1988) may be of value when question (a) is
 considered in the context of the distance geometry above.

 Critchley (1980, 1986, 1988, 1991) contain work relevant to distance geometry, some of which we
 briefly note here. The interior of D is precisely the set of all those D for which the corresponding
 configurations have maximal dimensionality N- 1. Most of the interest of D is, then, in its boundary!
 Critchley (1991) obtains the support cone at each boundary point of D and shows that D admits a central
 ray which corresponds to the regular simplices. The angle which a matrix D makes with this central
 ray can be viewed as a continuous measure of the Euclidean dimensionality of the configurations
 associated with D, in a certain natural sense. The larger this angle, the lower the dimensionality is.
 Critchley (1986), proposition 12, gives the polar cones of D and of the set B of all centred inner product
 matrices. In each case the polar is taken with respect to the relevant linear hull of the original cone.
 Unsurprisingly, B0 - - B. Much more interestingly, D0 = B 1, where B I denotes B with all its diagonal
 entries set to 0. Critchley (1988) sets up the mathematical machinery to analyse how the properties of
 D are related to, and so can be obtained from, those of five other cones. Critchley (1980), p. 223, notes
 the tiresome non-convexity that arises when we do not square the Euclidean distances in D but that
 this problem does not arise when N= 3, when the non-zero boundary of D-or of its elementwise square
 root-consists of the collinear triangles.
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 Nicholas Lange (Brown University, Providence): I have a comment on an applied modelling, data
 analytic aspect of Professor Goodall's work, perhaps most relevant to Section 5.

 When we observe a large number of short series of repeated shapes for each individual unit under
 study, it is quite natural to decompose total variation into its within- and between-individuals components
 of variation and covariation. Our joint work deals with the simplest interesting non-trivial case of
 longitudinal series of planar triangles whose trajectories are modelled on Kendall's sphere by using simple
 growth curves. Statistical summaries and inferences regarding changes in shape over time depend strongly

 on the choice of a Euclidean or non-Euclidean shape space in our context. Magnitudes of discordances
 between conclusions drawn using one space or another seem to depend directly on the magnitudes of
 total shape change throughout the observation period.

 In addition to analysing differences in means, it is always important to ask 'What happened to the
 (co)variance?'. When we presume homogeneity of within-individual, landmark-specific disturbances,
 covariance component analyses for repeated shapes in a growth curve setting are direct extensions of
 somewhat classical univariate methodology to a multivariate context, with perhaps a change of space.
 Yet when common variance is an implausible assumption, as would be the case when different landmarks
 are identifiable with differing degrees of precision, for instance, obtaining maximum likelihood estimates
 of primary and nuisance parameters is more difficult.

 Recent advances in methodology for hierarchical Bayesian computations with high dimensional models,
 with or without an assumption of conjugacy between likelihood and prior, make the restrictive common
 variance assumption unnecessary (see, for example, Lange et al. (1990)). We could use 'Gibbs sampling'
 technology in the statistical analysis of repeated shapes with different individual and landmark-specific
 disturbances in a straightforward albeit challenging and computationally demanding analysis.

 Equally demanding would be to carry out the type of experimental design to obtain the data required
 for estimation of landmark-specific (co)variances reliably. To do so properly, we would require multiple
 sets of landmark co-ordinates for each individual sampling unit, one set from each of a moderate number
 of independent 'digitizers' (human or machine). Even if we were able to obtain such a nice data set,
 allowing and fitting heterogeneous (co)variances could perhaps not make all that much difference in
 practical conclusions when compared with applications of simpler approaches in some cases. Yet if the
 various digitizers are not human, but are instead a moderate number of competing medical imaging
 modalities, then perhaps more challenging and computationally intensive models and methods are required
 to derive the most information from available data.

 Subhash Lele (Johns Hopkins University, Baltimore): I would like to thank Professor Goodall for
 asking me to comment on his mathematically impressive paper. The optimality properties of the Procrustes
 method of superimposition for estimating the mean form and shape are important to know. However,
 sometimes I wonder whether, in pursuit of mathematical pleasure, we statisticians are losing sight of
 the scientific problems that we purport to solve.

 My main problem with superimposition methods (Lele, 1991) is that the definition of shape or form
 difference is strongly tied to the choice of the loss function used for superimposition. Following Goodall
 and Bose (1987), if we write Y= b(X+ J)B + t and call J the shape difference between X and Y, J is
 non-identifiable. This is why in Fig. 4 we obtain three different inferences about how the same two
 groups differ in shape. Scientifically this is unsettling. A biologist is usually not interested in merely
 testing whether the two populations are equal in shape but mainly in knowing where and by how much
 the two shapes or forms are different. Localization of form difference is problematic when using
 superimposition methods of form comparisons. I do not know how we can approach the study of
 allometry and other biological problems with a non-identifiable form and shape difference. We can
 circumvent this problem of non-identifiability by using the Euclidean distance matrix representation
 for the landmark data. See Lele and Richtsmeier (1991a, b) and Richtsmeier and Lele (1990).

 One technical point: it is not clear to me why EN is estimable. Is it not the same problem as discussed
 in Neyman and Scott (1948) where, if the Xi are independent N(m + ti, a2), a,2 is not estimable unless
 there are at least two observations with the same ti? We can take EN to be diagonal which implies that
 landmarks are varying independently of each other. This seems to me a highly unrealistic assumption.
 For the general EN, it is not clear how we can use the statistic suggested in Section 13, paragraph 1.

 The author replied later, in writing, as follows.

 I wish to thank the discussants for their informative, generous, and always helpful and interesting
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 comments. Dr Small notes that 'everything that remains is shape', and indeed the breadth of the discussion
 reflects that fact. In this rejoinder I shall consider first the more technical issues (algorithms and models)
 before turning to the discussion of shape differences.

 Spectral methods
 Professor Kent shows that the mean shape for planar figures is the eigenvector corresponding to the

 largest eigenvalue of an NxN complex matrix. Rohlf and Slice (1990) give a similar solution in the
 affine case, now cast into an elegant QR form by Dr Hastie and Dr Kishon. In general, if the two-figure
 superimposition is a linear regression (for the planar shape case, see the end of Section 7), then the
 mean of L figures is the solution of a spectral problem. This result throws light on to the algorithmic
 issues raised by Professor Stoyan and Professor Ziezold.

 Theorem (linear-spectral). Let Xi*: q xp denote the carrier matrix constructed from the landmark
 co-ordinates of the ith figure, let fi: p x r denote the nuisance parameters, let 0: q x sr denote the mean
 parameters, and let {i: s x 1 be the covariate vector (all quantities real or complex). Then a basis for
 the solution of

 o=arg min { IIA7f- 0 (, 3Ip) II2} such that OTO=I (5)

 is the eigenvectors corresponding to the largest r eigenvalues of Ei(Hi ? i( ), where Hi=
 X*(X*TX*)-IX*T is the hat matrix.

 This theorem covers the complex case (Kent), planar shapes in real co-ordinates (q, p, r, s)=
 (2N, 4, 1, 1), affine superimposition of figures in RK, (q, p, r, s) = (N, K+ 1, K, 1) and shape and affine
 regression s> 1. Constraints of the form 1T6 symmetric (Section 16.1) are not enforced directly.
 Excluded cases are the size-and-shape problem when K= 2 and the size-and-shape or shape problem
 for K) 3. In the weighted least squares version, a general q x q covariance E is inserted in equation
 (5), and the Hi modified accordingly. For shapes of planar configurations, the complex case is more
 restrictive, as E is Nx N complex (Kent) or 2Nx 2N real.

 Procrustes models and identifiability
 There are four steps to the Procrustes modelling approach.

 (a) Define the analogous multivariate model.
 (b) Include nuisance parameters for similarity transformations.
 (c) Resolve questions of identifiability.
 (d) Develop inference techniques in the appropriate tangent spaces.

 For the one-sample model, steps (a) and (b) yield equation (5.1). The likelihood includes ridges, and

 for identifiability (step (c)) It may be standardized to centroid 0, size 1, and lower triangular pattern.
 The pairwise model discussed by Mr Walder is more complicated. Adapting Goodall and Bose (1987),

 equation (11), let (Xi, Yi), i = 1, . . ., L, be the paired observations. Steps (a) and (b) give

 Xi = a?x (i + Ex,) Qlx + lNXi(
 1j=ay(~L/+6Ey)(~y+1N4 (6) Yi = aeYi (Iti + 6 + Eyi ) QYi + 'NCOYiT

 We assume that the Ex. and Ey are mutually independent. When the ,ui are random, equations (6) are
 comparable with Walder's set-up. For fixed 6 the shape [i + 6] varies according to the choice of ,u
 along the fibre of [ ,ui ] . Conditions for identifiability are that each ,ui, and also 6, is in the Procrustes
 tangent space of ,u, where [ j, ] is the mean shape of the [ ,ui ] (and ,u may be standardized). This defines

 a common alignment, between the Xi and Yi, and the rotation Ro, in Walder's equation is unnecessary.
 (For small overall shape differences Ro, is unnecessary in Walder's set-up also.)

 Estimation is straightforward: superimpose the Xi by generalized Procrustes analysis, then
 superimpose the Yi on the Xi' in L separate ordinary Procrustes analysis steps. To test 6 = 0 we compare
 &=E (Yi- Xi')/L with the [Yi'- Xi' by a rank deficient Hotelling's T2-statistic. This test is valid
 provided that the Procrustes tangent spaces [Tx,) almost coincide.

 Dr Lele points to some difficulties in estimation with many nuisance parameters. In the one-sample

 problem, each residual Ri is in TA, and the estimated covariance E represents pure variation in shape,
 between fibres (Sections 5 and 10). For example, the spectrum of the unrestricted covariance includes
 K(K+ 1)/2 zeros, corresponding to linear translation and rotation constraints, and, for small shape
 differences, one small eigenvalue corresponding to the non-linear scale constraint (equations (3.1)
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 and (3.2)). Thus for iteratively reweighted least squares estimation the covariance must be restricted,
 e.g. to EN=I, as in Section 14.4. The estimate N (cf. equation (10.3)) includes one linear (translation)
 and K(K- 1)/2 + I non-linear constraints. In this case the figures may be centred once and for all, or
 the empirical covariance may be shrunk towards IN or an alternative (below) that is more realistic.

 Models for variation in shape
 The discussions of Professor Mardia, Professor Kent and Dr Dryden reinforce a conclusion from

 Section 14 that in estimating mean shape the choice of covariance does not much matter. The metric
 is important in comparing distances between shapes, e.g. in inference (Section 9). Many of the discussants
 point out that intrapopulation variation in shape is poorly modelled by an isotropic covariance;
 correlations between landmarks tend to decrease with distance. It is easy for Procrustes estimation and
 inference to accommodate NocD- 1. Professor Mardia's proposes a circular bivariate AR(p) error
 structure. The pattern of bones in Fig. I is more complicated than a circle, motivating me to attempt
 covariance selection (Dempster, 1972) to model landmark variation; the true covariance reflects various
 localized biological processes.

 The Gaussian model is motivated by measurement error; when variation in shapeper se predominates
 a probability model directly in shape space may be more attractive. Dr Dryden compares the marginal
 shape density with the profile likelihoods in the Procrustes approach. Despite the advantages of a marginal
 approach in removing the effect of nuisance parameters (Kalbfleisch and Sprott, 1970; Cox and Reid,
 1987), and despite Dr Small's interesting proposal to use saddlepoint techniques to relieve some of the
 computational burden (and so make more general densities tractable), the simplicity of the profile
 likelihood (Dryden's equation (1)) suggests this to be the 'canonical' shape density, analogous to the
 Fisher density on the sphere. This is also an argument in favour of Procrustes methods! When K) 3,
 shape space is no longer homogeneous, and the canonical density is not a function of a alone (Goodall
 and Mardia, 1990a).

 I am grateful to Professor Mardia for querying some aspects of my comparison of the full and marginal
 likelihood approaches. Development of the Bayesian approach implied there is outside the scope of
 this rejoinder, and the paper has been edited in proof. (I have also corrected the reference to W. S.
 Kendall.)

 The various shape distributions are equivalent to first order (Professor Kent), but the arithmetic mean
 of Bookstein's variables differs from the other estimates (Professor Stoyan, Professor Ziezold and
 Dr Dryden). Each estimate is approximately an arithmetic mean in a tangent space, which for Bookstein's
 variables is fixed, and for the other estimates is tangent approximately at the mean shape. For planar
 triangles, Bookstein's shape space is tangent (via the stereographic projection) at the shape of equispaced
 collinear landmarks, and that arithmetic mean is biased in general. This limits the claim of consistency
 in Section 9; 1 am grateful to Dr Lele (personal communication) for questioning my original observation
 that the superimposition estimators are generally consistent (notwithstanding Professor Kent's result).

 Analysis of shape differences
 A theme of the discussion is that shape differences can be approached in many different ways, via

 (a) informative superimpositions,
 (b) transformations,
 (c) the geometry of shape space and
 (d) distances.

 Informative superimpositions. For Dr Lele, citing Goodall and Bose (1987), the non-uniqueness of
 superimposition is a drawback. Any single superimposition of X and Y contains all the information
 about the shape difference between [ X ] and [ Y ], if we are sufficiently perceptive (which we are not).
 For the hydrocephaly data there are three representations of the difference in mean shape shown in
 Fig. 4 (but just one inference), but these are too few, and not too many, as additional superimpositions
 may highlight other aspects of the shape difference. The difference Y- X' must be referenced to the
 corresponding X' or Y (Section 3). For linear figures, vectors X and Y, superimposition is equivalent
 to fitting a straight line, with X' = Y. We often consider alternative fits (ordinary least squares (OLS),
 resistant line, . . .). The residual vector is a useful descriptor of the non-linearity, or shape difference,
 between X and Y, but only when it is compared with X or X'.

 Transformations. The use of polynomial-based parametric transformations to describe a shape difference,
 due to Sneath (1967) and discussed in Section 15, is gracefully extended through Professor Bookstein's
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 spline-based decomposition, into principal warps (Bookstein, 1989) with the linear deformation as lowest
 order term. Some properties of the bending energy metric parallel those of E ocD- 1. Shape differences
 in figures comprising landmarks points are usefully described as deformations of the space in which
 they are embedded. The deformation in the spaces between the landmarks may be interpreted physically
 (e.g. as a best guess at the biological growth there), but that is strictly voluntary.

 In this paper equivalence classes of figures are defined by similarity transformations or rigid body
 motions. Equivalence classes modulo affine transformations are noted in Section 15 (Goodall and Mardia
 (1990a) derive the marginal density), and in the discussions of Dr Hastie and Dr Kishon, and Dr Kendall
 and Dr Le. Professor Mardia's example from on-line gesture recognition indicates the need for a still
 larger group and suggests connections to the field of pattern recognition. One further choice is projective
 transformations, which (in joint research) I am using to register X-ray images in a designed experiment
 that, incidentally, has many of the features sought by Dr Lange.

 Geometry of shape space. In Professor Kendall's spherical blackboard (Kendall, 1984), and now his
 present discussion, each shape is shown as a point in a low dimensional view of shape space, with icons
 of shapes included to orient the viewer. The symmetries of shape spaces are used to focus our attention
 on features that are most relevant to the hypotheses. I am impressed: this is 'envisioning information'
 in a particularly refined sense.

 The geometrical assumptions underlying the regression and growth curves techniques of Goodall (1990)
 and Goodall et al. (1990) are criticized by Professor Bookstein. He objects that the Procrustes metric
 is inappropriate, and biological organisms do not develop along geodesics in shape space. There is little
 reason to suppose that the organism grows along any other abstract trajectory, as, particularly in early
 development, different regions grow most rapidly at different times. Two alternatives are either to use
 the bending energy metric (as Bookstein proposes) or to endow shape spaces with the weighted Procrustes
 metric induced by general E. When E = EN? IK a quick solution is to premultiply each figure by
 Q (QTQ = E-1, Section 7). If EN oD-1 (say), which depends on X, then Q may be a compromise
 'median' choice.

 Some digitizations of the rat skull include 20 landmarks, others 17, and others the neural or the facial
 skull alone. This realization led me to investigate the trajectories of subsets of landmarks when all N
 landmarks follow a geodesic. The regression models are closed under subsetting when the condition

 ATb or TJt* symmetric is dropped (Section 16), and thus the shapes of triangles follow small circles.
 I look forward to further reports from Dr Kendall and Dr Le.

 To demonstrate growth curves regression, Goodall et al. (1990) chose a triangle with an exceptionally
 large shape difference, about 160 of arc in E'. This example shows that geometry does make a
 difference, seen in the different shapes traversed by the OLS great circle in shape space and the OLS
 straight line in the plane with Bookstein co-ordinates.

 Distances. The limit of subset analysis is to consider interpoint distances. Euclidean distance matrices,
 multidimensional scaling and Procrustes methods appear together frequently in the research literature
 (e.g. in my basic references Sibson (1978, 1979)!). I am very interested to see the more specific focus
 of Professor Gower and Dr Critchley on shape theory and wonder what will be made of the further
 decomposition of the already minimal Procrustes sum of squares in the alternative geometries of E and
 D, or of the notions of size-shape and angular shape. Recent practical application in morphometrics
 is provided in the papers cited by Dr Lele. Set against the invariance of each distance is

 (a) the redundancy of (N ) distances, instead of m shape variables or NK co-ordinates, and
 (b) the loss of direct information about the orientations and positions of the edges, which discourages

 description and inferences related to transformations.

 The solution is to take more distances, namely the space of size variables comprising distances between
 pairs of all possible derived landmarks (Bookstein, 1986). Then (for example) there is a derived edge
 parallel to the direction of maximal extension (see Fig. 6).

 The use of interpoint distances by Dr Bacon-Shone in gait analysis is quite interesting. I wonder how
 that special geometry might be described. The compositional data approach, applied to morphometrics
 by Campbell and Mosimann (1987) using the Dirichlet distribution, requires a linearization of spatial
 data. This limitation is overcome when the underlying geometry is changed from real to complex projective
 space.

 It is no surprise that there are so many alternatives to analyse shape differences, with some better
 suited to certain applications than others. Thus Dr Critchley's question (a) has more than one answer.
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 I have decomposed the test statistic using polynomial transformations (see also Bookstein and Sampson
 (1990)) and now wish to see its decomposition in distance geometry!

 Closing remarks
 At present the analysis of outline data is less developed than landmark methods. Professor Kent,

 and Dr Hastie and Dr Kishon offer some suggestions. The problem of registering polar wander paths
 posed by Professor Lewis is a transitional example, as the mean path may be piecewise linear. His
 Fig. 13 appears to be a very good superimposition already. One suggestion is to combine a combinatorial
 approach and spherical regression (Chang (1986), or this paper), to minimize, over SO(3), either

 (a) the sum of perpendicular distances between each set of points and the other piecewise linear path or
 (b) the length of the piecewise linear path through the pooled data that is faithful to the partial ordering.

 The (N, K, L) notation in this paper is taken from Sibson (1978, 1979) and Langron and Collins
 (1985), and is also used by Goodall and Mardia (1990a, b) and Carne (1990). Professor Kendall and
 others use the triple (k, m, n). Bookstein (1991) and Dryden and Mardia (1989a, b) use still other notation.
 The inconsistency is unfortunate, but I do like a shape data set to comprise n observations of a (k x m ?)
 matrix of variables.

 Echoing Professor Mardia, I look forward to seeing more applications to three dimensions. Both
 geometry and statistics are important parts of the statistical analysis of shape. I agree with Dr Lange
 that more sophisticated statistical methods are worthwhile, but provided that the geometry is not
 oversimplified in implementing them. Professor Stoyan and Professor Ziezold mention using Procrustes
 techniques in cluster analysis. The graphical data analysis strategy of Weihs and Schmidli (1990) shows
 that Procrustes analysis, including inference, can have very general application.
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