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Computing the Uniform Component of Shape Variation
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Abstract.—Any change in shape of a configuration of landmark points in two or three dimensions includes a uniform
component, a component that is a wholly linear (affine) transformation. The formulas for estimating this component have
been standardized for two-dimensional data but not for three-dimensional data. We suggest estimating the component by
way of the complementarity between the uniform component and the space of partial warps. The component can be estimated
by regression in either one space or the other: regression on the partial warps, followed by their removal, or regression on
a basis for the uniform component itself. Either of the new methods can be used for both two- and three-dimensional
landmark data and thus generalize Bookstein’s (1996, pages 153–168 in Advances in morphometrics [L. F. Marcus et al.,
eds.], Plenum, New York) linearized Procrustes formula for estimating the uniform component in two dimensions. [Affine;
geometric morphometrics; Procrustes; regression; shape statistics.]

Informally, the shape of a set of p landmarks in
k-dimensional space is the information about the points
that is not changed when the configuration of all p points
is moved or rescaled as a whole. This information in-
cludes familiar shape variables such as angles and dis-
tance ratios but also goes beyond them with the aid
of a fairly rigorous biometric method that has emerged
over the last approximately 15 years. The new approach
has greatest power for statistical testing and biological
understanding when variation in shape is small (i.e.,
when shapes are sufficiently close to their mean). Thus,
it is most useful when faced with the amounts of mor-
phological variation systematists often find when de-
scribing adults in species of the more complex animal
phyla.

When the variation in shape is sufficiently small, sta-
tistical analyses of shape variation can be performed
using standard multivariate statistical methods. These
analyses are performed by making a linear approxima-
tion to Kendall’s shape space (a multidimensional non-
Euclidean space of all possible shapes of configurations
of landmark points; Kendall, 1984, 1985). The approxi-
mation is called a tangent space approximation because
it can be visualized as a Euclidean space tangent to shape
space (Bookstein, 1991; Rohlf, 1999; Slice, 2001). The point
corresponding to the average shape is usually used as the
point of tangency (and is often called the reference). The
Procrustes average shape for a sample can be computed
using a generalized Procrustes analysis (GPA; see Rohlf
and Slice, 1990, where it was called generalized orthogo-
nal least-squares fitting). The specimens are then super-
imposed on this average shape to remove variation of
location, orientation, and scale, specimen by specimen.
It is often convenient to treat the average, Xc (a p by k ma-
trix, the subscript c stands for consensus), as a row vector,
x̄, of kp elements. As a set of Cartesian coordinates, x̄ de-
fines a plane S that is orthogonal to it, the hyperplane of
shape coordinates with respect to x̄. Even though x̄ has kp
elements, the space is of just 2p− 4 dimensions for two-
dimensional (2D) data or 3p− 7 dimensions for three-
dimensional (3D) data because of the constraints on vari-
ation imposed by GPA. This space is called Kendall’s

tangent space because it is tangent to Kendall’s shape
space (see Rohlf, 1999 and Slice, 2001, for discussion
of the tangent space and its relation to Kendall’s shape
space, especially for the case where p= 3 and k= 2, tri-
angles in the plane). We assign coordinates on S with the
point x̄ as the zero vector.

Using shape coordinates in place of conventional
shape variables such as angles or ratios, the new sta-
tistical shape analysis treats the shape of the landmark
point configuration as a whole so as to permit the sys-
tematist to ask new kinds of questions that could not
be formulated before. One of the simplest of these ques-
tions turns out to be surprisingly fundamental: the issue
of how to describe overall changes of proportion that are
“the same everywhere.” The geometric metaphor here,
already used by D’Arcy Thompson, is the uniform trans-
formation or affine transformation from classic analytic
geometry. Affine transformations leave all sets of parallel
lines parallel; these transformations take square graph
paper into graph paper made up of parallelograms, or
the equivalent in three dimensions, taking a system of
identically oriented cubes into a system of identical and
identically oriented parallelepipeds. Corresponding to
this insight is a statistical question. Any landmark rear-
rangement has some component of change of this sort,
and some component that is on the contrary local, essen-
tially different in the vicinity of different landmarks. This
local component is usually called the subspace of pure
bending. One can ask whether either of these compo-
nents is informative about differences between groups of
specimens or whether one or the other is correlated with
causes or effects of form, etc. In particular, systematic ef-
fects on a uniform component often arise as responses
to uniform causes, such as biomechanical aspects of on-
togeny or changes in typical biomechanical requirements
over phylogeny. Causes such as these are typically inter-
preted in the language of stresses and strains interpreted
likewise as uniform tensors. This interpretation is often
used in analyzing specific parts of a form that in life
are concerned with the delivery of force; in mammals,
these parts might include jaws, burrowing apparatus,
the scapula, and the pelvis. When explanations via some
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biomathematical tensor are among those entertained, it
is advantageous to be able to couch any claimed data
signal in a fully quantitative form, whereby hypothe-
ses of group difference, ecophenotypy and the like, may
be challenged by statistically phrased null hypotheses;
principal strain given standard errors of estimate, etc. In
contrast, local shape changes are often more difficult to
rationalize as expressions of tensor explanations. Expla-
nations of local shape changes are typically expressed in
terms of local morphogenetic processes, and the corre-
sponding morphometric tests will not involve principal
strain terms.

The essential first step in answering these various
questions is to formalize the division into uniform versus
nonuniform components in an objective way. We used a
mathematical model of the Kendall tangent space that
divides this space into two subspaces, one just for the
uniform shape changes and one that permits the system-
atist to reconstruct all the others. In the 1990s, most of the
work by morphometric toolbuilders went into the sec-
ond part, the description of pure bending, even though
that description is mathematically more difficult. Here,
we present a new approach for partitioning shape vari-
ation into these two components and provide formulas
for the uniform shape component that can be used on 3D
landmark data and on 2D data. This approach clarifies
some of the relationships between shape spaces, bending
energy, and the thin-plate spline.

The Kendall tangent space S decomposes into a vector
sum of two subspaces that are each of interest in mor-
phometric studies (cf. Bookstein, 1991; Rohlf, 1999):

S = U ⊕ B, (1)

where U is the subspace of uniform transformations and
B is the subspace of those transformations that are “pure
bending,” combinations of the eigenvectors of the bend-
ing energy matrix that correspond to the nonzero eigen-
values. The symbol ⊕ indicates the direct sum of two
vector spaces. Equation 1 means that any set of shape
coordinates, a vector s of kp elements, can be written
uniquely as a sum s = u+ b of one vector from U and
one vector from B.

S is a Euclidean space and so are its subspaces U and B.
The Euclidean geometry of S is the Procrustes geome-
try of the original coordinate space: The length of any
vector in S is its Procrustes distance from the sample
mean shape x̄. Moreover, U and B are perpendicular
in this Euclidean metric, meaning that if s = u+ b then
|s|2 = |u|2 + |b|2, the usual Pythagorean decomposition
of squared distance. This perpendicularity is important
because it means that we can use standard multivari-
ate statistical methods within these subspaces separately
without confounding the uniform part by the bending
part or vice versa. The Procrustes metric is not equal to
bending energy even though the Procrustes subspace B
is spanned by the eigenvectors of nonzero bending (this
seems to be a common misunderstanding). The vector
space S can be described usefully by many different met-

rics (Euclidean distance, generalized distance, etc.), but
not by bending energy.

In the geometric morphometric literature, two differ-
ent bases are used to describe the subspace B of pure
bending: principal warps (eigenvectors of the bending
energy matrix arising out of the thin-plate spline) that
are orthonormal in the Procrustes geometry, and rela-
tive warps (principal components) that are orthogonal
in the covariance structure of the data. That is, the prin-
cipal warps are geometrically orthogonal but correlated
in most data sets, whereas relative warps are uncorre-
lated and not geometrically orthogonal. Each set is just
a rotation of the other, although the principal warps are
usually computed first.

BOOKSTEIN LINEARIZED PROCRUSTES APPROACH

Bookstein (1996b) presented, in effect, an analog of the
principal warps for the subspace U2 for uniform shape
changes in 2D data. For this case, one can write down a
fixed basis for U2 that is guaranteed orthonormal in the
Procrustes geometry (i.e., the two vectors are geometri-
cally orthogonal in the tangent space although the statis-
tical scatter of samples along these vectors may be corre-
lated in a particular data set), no matter what the mean
form may be. Using this basis, the uniform shape scores
for a specimen are

u1 =
(
α
∑

yi1xi + γ
∑

xi1yi

)/√
αγ

(2)
u2 =

(
−γ

∑
xi1xi + α

∑
yi1yi

)/√
αγ ,

where α =∑ x2, γ =∑ y2, xi , yi are coordinates of
the ith landmark in the average shape (to simplify the
equations, the average shape has been rotated to align
it to its principal axes), and 1xi and 1yi are the dif-
ferences in coordinates between a specimen (Procrustes
aligned to the average) and the average shape. Note that
α + γ = 1 (the average shape is taken at unit centroid
size). Rohlf (1996) gave a slightly different version of
these equations (based on an early draft of Bookstein’s,
1996b, manuscript), and Rohlf (1999) expressed Equa-
tion 2 using matrices.

This basis, a function only of the average, is easy to vi-
sualize in an intuitive way: u1 is a horizontal shear, and u2
is a vertical dilation. The statistically uncorrelated basis,
the relative warps of the uniform component (Bookstein,
1996a), is not really necessary for 2D data. One could just
look at the 2D scatter of u1 and u2, note the directions
along which specimens differ most, and construct the
principal strains of the corresponding deformations by
ruler and protractor (Bookstein, 1991).

The space B3 of pure bending energy for 3D data has
a simple basis that arises by an eigenanalysis of bend-
ing energy just as it did for 2D data, but we were not
able to produce the analogous set of principal warps
for the space U3 spanning the five uniform dimensions.
Bookstein (1996b) suggested several possible approaches
rather than a single explicit formula. Here, we provide
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explicit formulations for the relative warps in the 3D case.
These basis vectors for U3 are guaranteed orthonormal
in the Procrustes geometry of the tangent space and also
will be uncorrelated in the data being analyzed. Their
disadvantage is that they are not principal warps; they
are functions of the data set as a whole, not just of the
mean form. Their advantage is they have simple formu-
lations nevertheless and can be used for both 2D and 3D
data.

TWO NEW APPROACHES

The first approach is based on the observation that if
S = U ⊕ B, then for any vector s of S, if s = u+ b then
u = s − b. Given a shape S, if we have b we can get u and
vice versa. The second approach involves regression and
comes from yet another set of basis vectors of U3 that span
the set of nine affine transformations of each Procrustes
component (x, y, or z) that are shears with respect to
each of the same three components (x, y, or z) of the
reference form. A singular-value decomposition (SVD;
Eckart and Young, 1936; Jackson, 1991) is used to reduce
the set of nine different one-dimensional projections to
the common space of five dimensions they all lie within.

For both approaches, a generalized Procrustes analysis
is performed first to obtain the average configuration
of landmarks that will be used to construct the tangent
space. The landmark configurations for each specimen
are then Procrustes aligned to the reference shape and
projected onto the tangent space that is orthogonal to
the x̄ vector.

The computational steps are given below. Both algo-
rithms assume that the p by k matrices of landmark
coordinates for each specimen (where k is the num-
ber of coordinates for each landmark) are strung out as
row vectors with kp elements and collected in a single
matrix X.

COMPLEMENT OF THE SPACE OF PURE BENDING
SHAPE VARIATION

The Procrustes alignment of each specimen to the
mean shape removes any nonshape variation among the
specimens. Nonuniform shape variation can be removed
by the multiplication by a matrix that projects onto the
space orthogonal to the partial warps. Any variation
that remains in the coordinates must represent uniform
shape variation because the uniform plus the nonuni-
form shape components account for all shape variation.
An SVD can then be used to extract the dimensions cor-
responding to the uniform shape component because
they are the only ones that still contain variation. The
algorithm is as follows.

First, construct a p by p matrix:

N = Ip − E(EtE)−1Et , (3)

where E is a p by p− k− 1 matrix of principal warps of
the bending energy matrix (see Bookstein, 1991; Rohlf,
1999) based on the reference and Ip is a p by p identity

matrix. Multiplication by N projects points onto a sub-
space orthogonal to the subspace spanned by the column
vectors in the E matrix. This operation is the same type
as used by Burnaby (1966) to remove variation parallel
to a specified size vector. It is also the matrix used in
regression analysis to compute residuals.

Second, perform an SVD on the matrix V(N⊕ Ik),
where V = X− 1nx̄ is an n by kp matrix of differences
between the aligned specimens and the reference config-
uration (arranged as a row of kp values for each speci-
men), 1n is a column vector of n 1s, Ik is a k by k identity
matrix, and⊗ indicates the matrix direct product opera-
tion. The result is

LSRt = V(N⊕ Ik), (4)

where L is an n by kp matrix of left singular vectors, S is
a kp by kp diagonal matrix of singular values (of which
at most k + 1

2 k(k − 1)− 1 are nonzero), and R is a kp by
kp matrix of right singular vectors.

The n rows of the first k + 1
2 k(k − 1)− 1 columns (two

for 2D data and five for 3D data) of the product LS give
scores for the uniform component of shape differences
for the n specimens. The kp rows of the corresponding
columns of the R matrix give the coefficients that define
the uniform components as linear combinations of the kp
coordinates.

CONSTRUCTION USING REGRESSION

The same results can be obtained by regressing each
specimen’s Procrustes aligned coordinates onto the coor-
dinates of the reference shape. The resulting k by k matrix
of regression coefficients for the ith specimen is stored as
the ith row of a matrix with k2 columns. Because these
k2 vectors are redundant, we use an SVD of this matrix
to yield the columns that span the space of the uniform
shape component (these are the composite vectors, com-
binations of the columns, with nonzero singular values).
The computational steps are as follows.

First, the regression coefficients for the x, y, and z co-
ordinates are computed separately as

Bx =
(
Xt

cXc
)−1Xt

cXt
x, (5)

where Xx is the n by p matrix of x-coordinates of the
aligned specimens, and By and Bz are defined similarly as
k by n matrices for the y and z coordinates. This regression
is the same as used in equation 23 of Rohlf and Slice (1990)
to compute the affine fit of one configuration of land-
marks onto another. The regression coefficients are then
combined into a single n by k2 matrix B = [Bt

x|Bt
y|Bt

z].
As shown by Rohlf and Slice (1990), no intercept term
is needed for the regression because the mean and the
aligned specimens are centered on the origin.

Second, perform an SVD of B to yield

LSRt = B (Xt
c ⊗ Ik). (6)



2003 ROHLF AND BOOKSTEIN—COMPUTING THE UNIFORM COMPONENT 69

Where L is an n by n matrix of left singular vectors, S is
an n by kp diagonal matrix of singular values (at most
k + 1

2 k(k − 1)− 1 on the diagonal are nonzero), and R is
a kp by kp matrix of right singular vectors.

As above, the first k + 1
2 k(k − 1)− 1 columns (two for

2D data and five for 3D) of the product LS give scores
for the uniform component of shape differences for the
n specimens.

This method is valid because for “small” shape vari-
ations the two least-squares steps involved in generat-
ing the Procrustes uniform estimate, the Procrustes su-
perposition and the projection down to the 2D or 5D
linear subspace, pertain to orthogonal linear subspaces
of the full space of Cartesian coordinate variation and
thus can be carried out in any order. Subject to the con-
straints that have already been applied by projection
into Procrustes shape space, the linear term that mini-
mizes the overall sum of squares must minimize it co-
ordinate by coordinate. The role of the SVD is simply to
pull this 2D or 5D subspace out of the redundant 4D or
9D representation. (The other dimensions pertain to the
rotational and isotropic terms of the original Procrustes
fit, which have already been removed by the Procrustes
alignment of each specimen to the average configuration
of landmarks.)

DISCUSSION

Both approaches have the advantage that they do not
require the reference configuration to be aligned to its
principal axes. Thus, it is easier to display the results of
an analysis with the reference in its original alignment,
which may correspond to a more natural or standard
orientation for the organisms being studied.

Although the new methods will be more convenient to
use in most applications, the Bookstein (1996b) method
for 2D landmarks can still be useful. That method has
the advantage that the meaning of the u1, u2 axes do not
depend on the data and thus are useful as a fixed co-
ordinate system for comparing different data sets; these
axes were used in this way by Rohlf (1999, 2000b). The
method for 2D data also involves much less computa-
tion. The more general approaches are needed for 3D
landmark data. They are also useful for 2D data because
they do not require the reference configuration to be ro-
tated to its principal axes. Of the two new approaches,
the regression method is the more practical because it is
direct and involves much less computation.

The method using regression does not require the com-
putation of the bending energy matrix. Thus, shape vari-
ables spanning the space of pure bending shape vari-
ation, B, can be constructed without reference to the
bending energy matrix or its eigenvectors (the principal
warps) or to thin-plate splines. These shape variables
can be constructed as the complement of the space of
the uniform component by using the regression of the

uniform component rather than the principal warps in
Equation 3 and keeping the 2p − 6 (for 2D data) or
3p − 12 (for 3D data) columns of LS in Equation 4 that
have nonzero singular values.

This new procedure is now used in NTSYSpc Rohlf
(2000a) and will be implemented in the tps software
(Rohlf, 1998a, 1998b, 2000c).
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