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ABSTRACT Nontraditional or geometric morphomet-
ric methods have found wide application in the biological
sciences, especially in anthropology, a field with a strong
history of measurement of biological form. Controversy
has arisen over which method is the “best” for quantifying
the morphological difference between forms and for mak-
ing proper statistical statements about the detected dif-
ferences. This paper explains that many of these argu-
ments are superfluous to the real issues that need to be
understood by those wishing to apply morphometric meth-
ods to biological data. Validity, the ability of a method to
find the correct answer, is rarely discussed and often ig-
nored. We explain why demonstration of validity is a
necessary step in the evaluation of methods used in mor-
phometrics.

Focusing specifically on landmark data, we discuss the
concepts of size and shape, and reiterate that since no
unique definition of size exists, shape can only be recog-
nized with reference to a chosen surrogate for size. We
explain why only a limited class of information related to
the morphology of an object can be known when landmark
data are used. This observation has genuine conse-
quences, as certain morphometric methods are based on
models that require specific assumptions, some of which
exceed what can be known from landmark data. We show
that orientation of an object with reference to other objects
in a sample can never be known, because this information
is not included in landmark data. Consequently, a descrip-
tor of form difference that contains information on orien-
tation is flawed because that information does not arise

landmark data; shape; size; form; invariance; statistical models

from evidence within the data, but instead is a product of
a chosen orientation scheme.

To illustrate these points, we apply superimposition, de-
formation, and linear distance-based morphometric methods
to the analysis of a simulated data set for which the true
differences are known. This analysis demonstrates the rela-
tive efficacy of various methods to reveal the true difference
between forms. Our discussion is intended to be fair, but it
will be obvious to the reader that we favor a particular
approach. Our bias comes from the realization that morpho-
metric methods should operate with a definition of form and
form difference consistent with the limited class of informa-
tion that can be known from landmark data. Answers based
on information that can be known from the data are of more
use to biological inquiry than those based on unjustifiable
assumptions. Yrbk Phys Anthropol 45:63-91, 2002.
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INTRODUCTION

“The analysis of shape-variation and growth has turned out to be
a more difficult problem than one might have thought a decade
ago.” (Reyment et al., 1984, p. 5.)

The study of shape and shape change is intrinsic
to biological anthropology. Before modern statistics
was established as a discipline, students of biology
were observing shapes and recording metric obser-
vations in an attempt to understand the way in
which biological forms varied from one another, to
establish the correspondence between form and
function, and to quantify the description of charac-
teristic traits used in the identification of species. As
evolutionary thought entered mainstream biology,
quantitative studies were included in the discussion
of the natural variation and phylogenetic relation-
ships among species. Later, the long-standing bio-
logical interest in the relationship between morphol-
ogy, development, and phylogeny introduced by von
Baer took on a decidedly quantitative approach
when rejuvenated by the work of others (Gould,
1977, 1981; Huxley, 1932).

As biological inquiry became more quantitative, a
plethora of methods were borrowed from modern
statistics, some of which (e.g., significance testing)
have become mandatory in published analyses of
biological data. Multivariate statistics provided an
entirely new collection of tools. Whole series of ob-
servations designed to capture the essence of form
could be analyzed simultaneously by these methods.
Renewed interest in the work of D’Arcy Thompson
during the latter half of the 20th century, most
notably in the work of Bookstein (1978), steered the
focus from multivariate space back to the geometry
of biological form. Early geometry-based method-
ologies proposed by Boas (1905) and Sneath (1967)
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did not gain the attention they merited until later
(for the specifics of Boas’ contribution, see Cole,
1996). This movement and the methods developed
subsequently comprise the field of geometric mor-
phometrics. Defined as the fusion of geometry and
biology (Bookstein, 1982), morphometrics deals
with the study of form in two- or three-dimen-
sional space. The field flourished from a desire to
analyze biological forms in ways that preserved
the physical integrity of form in two or three di-
mensions, and to avoid collapsing the form into a
series of linear or angular measures that do not
include information pertaining to geometric rela-
tionships of the whole (Fig. 1).

In this paper, we look at morphometrics against a
background of the philosophy and practical applica-
tion of various methods, and evaluate the compe-
tence of these tools to decipher the morphological
complexities that are the product of biological pro-
cesses. Given landmark data, we differentiate those
aspects of form than can be known and those that
cannot be known, and urge that these facts not
be ignored. We outline the assumptions underlying
certain methods, relating them to the limitations of
evidence available from data sets, and emphasize
the importance of the assumptions that underlie
morphometric methods. Validity and appropriate-
ness, as opposed to convenience and engaging
graphics, should guide users in their choice of
method and software.

With the ready availability of digitizers, powerful
desktop computers, and morphometrics software
packages, morphometric analyses can be performed
with little comprehension of the mathematical or
logical basis of the approach. This is a dangerous
situation for any science. It is not our intention to
survey the entire field of morphometrics in this pa-
per (for reviews, see Richtsmeier et al., 1992; Rohlf
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Fig. 1. Measure of a biological form captured by (a) the loca-
tion of landmarks on the form, (b) selected individual linear
distances between those landmarks, (¢) selected angles formed by
distances between landmarks, and (d) landmarks in a coordinate
system. Relative location of landmarks (d) maintains the geome-
try of relative location of landmarks under study, while the in-
ventory of linear distances (b) or angles (c) does not maintain the
form, though geometric information can be reconstructed from
this subset. Certain subsets of linear distances or angles can
provide means to reconstruct an entire form (Lele and Richts-
meier, 2001; Strauss and Bookstein, 1982), but isolated linear
distances and angles do not.

and Marcus, 1993). While we have experimented
with other morphometric approaches, we have de-
veloped and worked extensively with Euclidean dis-
tance matrix analysis, and therefore admit a parti-
san viewpoint. We aim to demonstrate our viewpoint
while showing the qualities of all approaches within
a broad context of the properties of landmark data.
We present a discussion of those items that must be
considered when deciding on which morphometric
method to use in analysis. To do so, we visit several
key issues pertaining to the application of land-
mark-based morphometric techniques to biological
data. We discuss statistical reasoning as it relates to
the study of form, and provide an analysis of a sim-
ulated data set using several alternative morpho-
metric methods. We provide theoretical and practi-
cal reasons for differences in the results given by
various methods. The purpose of our presentation is
to take a step back to remember the reasons why
geometric morphometric techniques were developed,
and the nature of the biological phenomena to which
they are applied.

CONCEPTUAL ISSUES
Why measure?

The application of quantitative methods to biolog-
ical data sets is usually done for two distinct pur-

poses that are aimed at different objectives: hypoth-
esis generation, and hypothesis confirmation. In
morphometrics, the first approach involves the ap-
plication of methods to discover new information
within the data, and is called “data exploration.” In
this instance, quantitative methods are applied to a
data set, and the investigator looks for patterns
within the data that suggest underlying biological
processes or effects. This exercise should not, and
usually does not, take the form of blind application
of methods to data. In the usual situation, a knowl-
edgeable researcher applies methods to explore a
“hunch.” Although as such it is not a formal hypoth-
esis test, the activity is driven by a hypothesis, or
at least by an idea. This approach is often dis-
couraged (especially by the major funding institu-
tions), but is an aspect of pattern recognition, an
extremely useful activity that can result in the dis-
covery of complex relationships that might escape a
more constrained hypothesis-driven analysis of the
data.

The second approach involves more formal hy-
pothesis testing. Here a question is formulated, data
are collected that relate directly to the question
posed, and comparisons are made with the intent of
answering a specific question. Ideas are often formu-
lated and tested as a null hypothesis of no effects
and a nonspecific alternative hypothesis of nonzero
effects.

Whether null hypotheses are proposed and tested,
or alternate approaches are adopted, quantitative
data are required to operationalize ideas about the
morphology of biological phenomena under study.
This, then, is the foremost reason that we measure:
to explicitly propose, test, and defend our ideas to
our scientific peers. But whether we collect data to
test a hypothesis or explore a hunch, the data we
collect are chosen with an explicit plan in mind.
This, of course, presents the possibility that we ne-
glect some features by targeting certain measure-
ments.

Limitations of landmark data

Capturing geometry by way of landmark data has
become rather commonplace. Landmarks are pre-
cise locations on biological forms that hold some
developmental, functional, structural, or evolution-
ary significance. Diverse authors have discussed
various types of landmarks (Bookstein, 1991; Mar-
cus et al., 1996; Valeri et al., 1998; Lele and Richts-
meier, 2001). Landmark locations are recorded as
two- or three-dimensional coordinates resulting in a
spatial map of the relative location of the chosen
points (Fig. 1d). When the same landmarks are col-
lected on a number of objects, we refer to them as
corresponding landmarks. The basis for this corre-
spondence may be phylogenetic (these are some-
times called homologous points), structural, devel-
opmental, or biomechanical (Lele and Richtsmeier,
2001).
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With the transfer of technology from the defense
industry to the scientific community during the
1970s and 1980s, it became possible to easily and
accurately record the location of points on an object
in two- or three-dimensional space. Since biological
objects are composed of many structural components
whose location can be precisely defined, the identi-
fication of landmarks is simple. In craniometry as
well as anatomy and paleontology, classical anatom-
ical definitions of biological landmarks already ex-
isted. The location of these, as well as additional
nontraditional landmarks, could now be accurately
obtained as coordinate locations, providing the re-
searcher with a map of the relative location of these
points in space. Thus, data summarizing the geom-
etry, or form, of biological objects were reliably and
quickly recorded. This seemed a great opportunity
for biologists, but the challenge remained to develop
methods that used these data in their full, geometric
configuration.

The use of landmarks has become widespread be-
cause landmarks are repeatable, because they pro-
vide geometric information in terms of the relative
location of points, and because a variety of methods
have been developed for their analysis. However,
landmark data may not be the appropriate choice for
all biological investigations. Salient features of mor-
phology are overlooked when landmark data are
used exclusively (Read and Lestrel, 1986). Land-
marks do not contain information on the spaces,
curves, or surfaces between them. If data concerning
regions between landmarks are not part of the data
collected, then we cannot expect to obtain verifiable
information regarding the aspects of form or form
change occurring between landmarks. However, a
picture of the relative location of points (Fig. 1d)
does not convey much information to the uninitiated
without a superimposed outline. This realization
has not been missed by the authors of landmark
analyses, who often present results superimposed
onto an outline of the forms studied, even though the
outline is not considered in the analysis. These out-
lines are meant to provide a context within which to
put the landmark-based results.

Clearly, data other than landmarks are available
for morphometric analysis, and methods to analyze
alternate data types such as outlines have been de-
veloped (e.g., Lestrel, 1982, 1989; Lohmann, 1983;
Lohmann and Schweitzer, 1990; MacLeod, 1999;
MacLeod and Rose, 1993; Read and Lestrel, 1986).
These alternate data types are useful and appropri-
ate for specific investigations, but are not considered
in this paper. Here, we are concerned exclusively
with the analysis of landmark data.

If landmark data are appropriate to the research
question posed, then a choice must be made concern-
ing which landmarks to include in analysis. Land-
marks should be selected based on the biological
questions to be addressed by the data, but measure-
ment error must also be considered in the decision of
which landmarks to include. Measurement error
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must always be evaluated in relation to the specific
data collection machine and technique employed
(e.g., Corner et al., 1992; Hildebolt and Vannier,
1988; Kohn and Cheverud, 1992; Richtsmeier et al.,
1995; Valeri et al., 1998; Williams and Richtsmeier,
2002) and with consideration of the magnitude of
the comparisons being made (Kohn and Cheverud,
1992). For example, assessment of the differences
between two groups of juveniles requires more pre-
cision than comparison of juveniles and adults.

With the adoption of landmark coordinate data
comes the harsh reality that there are certain things
that can be known about the forms under study, and
other things that simply cannot be known. First, as
in all statistical studies, we can never know the true
population parameters, but can only estimate these
using a sample. Reasons for small sample size are as
diverse as the topics studied by research scientists,
but are common in anthropological research. More-
over, even with a large sample, we can only know
certain aspects of the population mean and variance,
and we cannot know others. Variability is particu-
larly difficult to characterize, because each data set
is collected in a coordinate system specific to the
orientation of the object during data collection. The
operations of translation, rotation, and reflection are
routinely used to transport all forms into a single
coordinate system to estimate variability. These op-
erations do not make variability in landmark loca-
tion knowable, but make it appear that variability
can be estimated properly. Regrettably, the estimate
of variability that is produced after registration is
flawed. This issue is explored fully later in this
paper.

Second, we cannot know the whole form when
landmark data are used in analysis. The use of land-
mark data requires that choices be made regarding
the exact number, location, and definition of land-
marks identified to represent the form. Certain por-
tions of the form may be overrepresented due to a
high density of biological features, while other sec-
tions remain underrepresented. Practical consider-
ations of time, efficiency, and measurement error,
coupled with a need for biological relevance and a
balanced representation of components, limit the
number and nature of landmarks available for
analysis.

Third, lack of a common coordinate system among
forms represented by landmark coordinate data
means that the difference between forms cannot be
realistically measured in the context of a particular
coordinate system. Methods that are coordinate sys-
tem-based require that a particular coordinate sys-
tem be adopted and, as we will show, this choice can
profoundly influence analytical results.

This last constraint is not trivial, and cannot be
dismissed by stating that matrix algebra enables
easy transformation from one coordinate system to
another. The lack of a common coordinate system
forms the core of our thesis regarding what can and
cannot be known about form and change in form as
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Fig. 2. Change in form is intuitively thought of as the result
of a combination of change in size and change in shape. The terms
size and shape have no unique definition, and are consequently
problematic when used in precise studies of change in form. See
Corruccini (1995) for a discussion of the efficacy of various meth-
ods in correctly identifying simple shapes.

quantified by the analysis of landmark data. The
repercussions of varying coordinate systems among
specimens under study are quite complex and seri-
ous if one wants to determine the true difference
between forms. We will return to this limitation
repeatedly in this article.

What does morphometric data tell us (or, what
are size and shape anyway)?

Morphometrics, by definition, involves the quan-
titative study of form. It is intuitively understood
that “form” consists of “size” and “shape” (Fig. 2), but
the measures we collect to study form contain infor-
mation pertaining to a combination of size and
shape. A great deal of effort has been targeted at
developing ways to separate these intertwined com-
ponents, but such attempts often remove biologically
interesting information from the analysis (Oxnard,
1978). The terms size and shape permeate the mor-
phometrics literature, but their definition is not pre-
cise. We all have colloquial definitions of “size” and
“shape,” but can we rewrite these ideas as precise
definitions?

A unique and precise definition of size does not
exist. Any given surrogate for size (e.g., a specific
length, area, centroid, or volume) is precisely de-
fined within a study, but these definitions are spe-
cific to a given analysis (Corruccini, 1987; Jungers et
al., 1995). Shape is defined on the basis of the chosen
surrogate for size, so that as the choice of size mea-
sure changes, so does the definition of shape. These
definitions cannot be applied across all data sets or
across all studies.

Before the development of morphometric tech-
niques for data collection and analysis, the quanti-
tative study of size and shape was most closely
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linked with the field of allometry. In allometric stud-
ies, metric data are collected from organisms, and
the relationship between size and shape is studied
using an allometric equation, e.g., y = bx™, where y
is a variable whose increase is considered relative to
that of another variable x. The variable x may rep-
resent a different dimension of the same organ or a
measure of total body size (Gould, 1966). As one of
the variables is usually thought a priori to represent
size, the focus of allometry is the relationship be-
tween size and shape in populations of organisms.

Although this approach has produced our tradi-
tional ideas about how size and shape are related,
the allometric equation defines shape only in rela-
tion to an associated size trajectory (Mosimann,
1979; Mosimann and James, 1979; for an insightful
chronology of operational definitions of shape, see
Godfrey and Sutherland, 1995). In allometric stud-
ies, size connotes magnitude and is often repre-
sented by a single surrogate measure (e.g., total
length, weight), a linear combination of metrics (e.g.,
arithmetic mean), or a more complex combination of
metrics (e.g., area, volume, geometric mean). None
of these measures of size is more intrinsically suit-
able than any other measure, but the choice of which
measure to use is of critical importance in determin-
ing the outcome of the analysis (Godfrey and Suth-
erland, 1995). Shape is not an individual measure
that can be directly collected, replicated, or checked
by consulting a single measure on any organism,
and the exact definition of shape changes with the
choice of the surrogate for size. Because this choice
exists, the definition of size is nonunique. Though
form is undeniably composed of size and shape, nei-
ther size nor shape can be defined uniquely (for a
discussion on the case of landmark data, see Lele,
1991; for a scale-invariant approach, see Rao, 2000).

An immediate goal in many analyses is to discover
a size variable that is statistically independent of
“shape.” But as Mosimann and James (1979) dem-
onstrated, “shape” as defined in any study can be
independent of only the chosen size measure. Con-
sequently, for all but the chosen measure of size,
associations exist between size and shape, and the
nature of this association will vary depending on the
size variable. Statistical independence is specific to
the way in which both size and shape are measured
or estimated, and does not necessarily translate to
independence between our idiomatic ideas of size
and shape. In biology there are few examples of
organisms that grow or evolve by changing in size
while maintaining a constant shape. Dwarf or giant
species are rarely perfectly scaled versions of related
organisms.

This is not to say that allometric studies are use-
less or misleading. Quite the contrary: allometric
studies can be very powerful and informative. The
researcher must remember, however, that “size” and
“shape” are defined a priori and may not pertain
directly to the geometry of the forms under study
(Jungers et al., 1995; Mosimann, 1979; Sprent,
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1972). Empiric definitions of size and shape have
been implicitly meshed with colloquial meanings of
the same terms, and the result is imprecise lan-
guage, ineffective description, and unclear commu-
nication among scientists.

Despite the language of many studies, differences
in size can never be removed or eliminated (but
measures can be scale-invariant), one can never an-
alyze “pure shape” (but shape with reference to a
specified size variable can be defined), and “size” and
“shape” are never biologically independent but are
instead inextricably interrelated. Only the mea-
sures that an investigator chooses to represent size
and shape may be independent (uncorrelated) in a
statistical sense. Neither size nor shape can be
uniquely defined.

Some morphometric studies may benefit from an
attempt to reduce the influence of size. In a compar-
ison of gorilla and chimp cranial anatomy, most if
not all measurements from the gorilla would be
greater than those from the chimp. The effect of size
would likely overwhelm and therefore obscure the
differences in “shape” between these two samples.
However, in attempting to reduce the influence of
size, we might choose to scale data by the geometric
mean of all distances, or by centroid size, or by a
single linear distance. This choice will affect the
results of any comparison of what we think of as
“shape.” We emphasize that the researcher must be
aware of these consequences. Many morphometric
analyses automatically apply a scaling algorithm in
calculating mean shapes and in comparing mean
shapes from two or more samples. Scaling can be a
useful step in certain research situations, but the
results of these analyses must be interpreted rela-
tive to the chosen definition of size.

The three problems that constrain what
we can know: orientation, orientation,
and orientation

Biological organisms that constitute a group re-
semble each other to such a degree that we have an
instinctive understanding of a typical or “average”
form that is representative of all members of the
group. We expect some members to be very similar
to the average, while others will be less like the
average. Since all forms differ from each other in
various ways, a scheme for characterizing these dif-
ferences is needed. It is convenient to organize and
specify these differences as divergences from an av-
erage form. Individuals within a group can each be
represented by landmark data, and a mean form can
be estimated from these data. To make clear the
problems associated with estimating a mean and
variance from landmark data, we introduce the fol-
lowing scenario.

Imagine a machine at your favorite zoo that
makes wax galago figurines. The mold in the ma-
chine produces identical galago forms. Being an an-
thropologist, you really like your wax galagos; you
buy many of them from the machine, and then try to
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Fig. 3. Set of toy galagos created following guidelines de-
scribed in the text constitutes our data. Face, ears, and tail of
each galago differ from the mold (the mean) in terms of fine
distinctions of features (landmark location) and in terms of ori-
entation of each galago with respect to the mold (rotation, trans-
lation, and reflection). When describing this group of toy galagos
mathematically, an error term characterizes differences in ear,
tail, and facial features with respect to the mold. Rotation and
translation parameters describe the orientation of each toy as it
lies on the shelf with reference to the mold.

make each one distinctive by sculpting its eyes, and
stretching or compressing its ears and tail a little
differently. Your addition of details to each galago
represents individual variation in the population of
wax galagos. Assume that the mold is equivalent to
the average of all these individual galagos (i.e., the
mean form). By recording coordinate locations of
salient features of the galagos, including the eyes,
ears, and tails, variation from the mean can be re-
corded.

After each galago is made from the mold in the
machine and modified by you, they are carelessly
placed on a storage shelf (Fig. 3). This movement,
from the mold to the shelf, consists of rotation and
translation. Rotation refers to a change in orienta-
tion characterized as movement around an axis (Fig.
4). Mathematically, rotation of an object corresponds
to multiplication of a landmark coordinate matrix by
an orthogonal matrix. Upon rotation, the relative
locations of the points representing any single ga-
lago remain the same, but the exact coordinates of
these landmarks change. Translation corresponds to
a form sliding in any direction (e.g., along a plane
defined by the shelf) while remaining stable in terms
of rotations around axes (Fig. 4). Mathematically,
translation corresponds to adding a matrix of iden-
tical rows to a landmark coordinate matrix. As with
rotation, the relative locations of points within any
particular form are maintained when a form is
translated, but the exact coordinates of the land-
marks change. Reflection is another type of transfor-
mation, although not likely in this particular exam-
ple. Reflection refers to flipping (or mirroring) an
object across one axis or plane. Mathematically, re-
flection corresponds to multiplying the values of a
column of a coordinate matrix by —1.0. In symmetric
forms, the left side is a mirror image, or a reflection
of the right side. Upon reflection, the relative loca-
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Fig. 4. Graphic demonstration of parameters of rotation,
translation, and reflection, each of which corresponds with a
particular mathematical operation (see text). Features on origi-
nal form remain unchanged whether it is rotated, translated, or
reflected, and therefore relative location of landmarks represent-
ing these features would remain invariant for all four forms.
However, rotation, translation, and reflection of the whole form in
relation to its original position result in different x and y coordi-
nates for these features in the four forms.

tion of points remains the same, but their value
along the axis or plane of reflection is reversed (in
other words, if the sagittal plane is the plane of
reflection, left becomes right).

Now, assume that the mold in your galago ma-
chine breaks and is no longer available. But you
want to make more galagos using the same exact
mold. Can you recreate the mean form using the
galagos that you previously made? Each galago dif-
fers from the mold (the mean) in terms of nuances of
sculpted detail and in terms of orientation with re-
spect to the original position in the mold in the
machine. An error term representing individual
variation characterizes differences in sculpted detail
with respect to the mold. The parameters of rotation
and translation describe where and in what orien-
tation each toy lands on the shelf with reference to
its original position in the machine (mean form).

If we knew the exact path that each galago trav-
eled from the machine to its position on the storage
shelf, the inverse of these paths could be used to
reorient them to their original positions in relation
to the mold. We could use the information about
each galago in its original position in the mold along
with the average configuration of the landmarks to
reconstruct the mean form. However, the rotation
and translation of each galago away from its original
orientation (the path each galago took as it moved
from the mold within the machine to the storage
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shelf) are unknown and unknowable. Because our
toy galagos are irregular three-dimensional forms,
there is no particular edge, or other outside frame of
reference, that can be used to put them together in a
way that will necessarily bring us to the original
arrangement. You might think you added the least
amount of modification to the eyes and so try to align
the eyes of all the galagos, but this is a poor substi-
tute for the lost mold. We have an informed idea of
what the mean form might look like, but the only
data that we have are the galagos that we have
created.

This situation is similar to that encountered by a
biologist when collecting data from a sample of bio-
logical organisms. The mean form and the relation-
ship of the other forms to the mean (the perturba-
tion structure) are unknown. The rotation and
translation required to place each form into a simi-
lar orientation are unknown and unknowable. Any
orientation may be picked to estimate the mean and
the variance, but as we will show, the choice of this
orientation has implications for the estimation of
the mean and variance.

As a biologist you are not really interested in
galago molds, but instead in an accurate calculation
of a mean form from your data. As a biologist, you
are also not particularly interested in the difference
in orientation among the forms, but you are inter-
ested in how the relative locations of features of each
form differ from their arrangement on the mean
form. Some biologists might argue that no “true”
difference between forms can ever be known, be-
cause the true mean landmark configuration of a
biological population does not (nor did it ever) have
a true orientation. And if you argue that there is no
true difference, then organisms cannot be defined by
the way a particular landmark has moved relative to
its original position (which never existed). But if
these arguments are correct, what good are morpho-
metric approaches?

In practice it is unrealistic to try to determine the
true orientation of a biological form. For example,
one might argue that orientation should be based on
the primitive state (e.g., the orientation of the im-
planted fertilized egg or some other justifiable onto-
genetic stage), but that choice would be as arbitrary
as adopting the standard anatomical position of the
adult as the chosen orientation. Forces of nature
(e.g., gravity), locomotion, and evolutionary and on-
togenetic change will work to make many chosen
orientations impractical, or at least inconvenient
when studying varieties of any form. An argument
for the adoption of a particular coordinate system on
mathematical grounds makes little biological sense.
Unfortunately, most morphometric approaches re-
quire that an orientation be adopted for analysis.
The software program often does this alignment rou-
tinely, with no input from the user.

The primary problem facing biologists who study
form using morphometric techniques involves the
relationship between the coordinate system local to
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each object, the coordinate system used to collect
landmark coordinate data from each object, and the
coordinate system used for analysis. No information
is available regarding how these coordinate systems
relate to one another. Yet, to ascertain biological
variability using the coordinate locations of land-
mark data, knowledge of the relationship of one
form to another in their respective coordinate spaces
(each galago in its original position in the mold in
the machine) is essential. Even if organisms are not
inherently defined in a pre-established, universal
three-dimensional (3D) coordinate system, the adop-
tion of a coordinate system is required by certain
morphometric methods. If all superimposition
schemes gave the same sample estimates, the choice
would be trivial. Unfortunately, estimates of the
mean and variance change with the coordinate sys-
tem adopted, as do the results of form comparison.

In reality, genetic and environmental influences
combine to affect structures, thereby creating per-
turbed forms. In geometric morphometrics, we col-
lect landmark data to represent these forms. When
observing a group of forms, we think of these indi-
viduals and the variation among them by relating
them to a typical, representative form that does not
exist but that we are able to envision. This is for-
mally done in statistics by calculating an average or
mean form, and measuring variation in the sample
with reference to an average. To do this requires
adoption of a statistical model. We now explore the
role that models play in estimation of the mean and
the variance.

Models and methods in morphometrics

Iflandmark data are appropriate for investigation
of a specific research question, there are several
methods available for their analysis. However, what
is often unappreciated is the fact that the statistical
model adopted by or incorporated into a method is a
critical choice in the analysis of data. Every time you
use a statistical package, your choice of a method
also includes the specification of a statistical model.
Because models are often not provided for the user’s
inspection and therefore not considered, the user
may remain unaware of the implication(s) of the
selected model for the analysis of data. Choice of the
model and its approximation or “fit” to the reality
under study is an important consideration in mor-
phometrics.

In statistical analysis, model specification comes
first. A model, as used here, is a mathematical con-
struct that attempts to characterize certain aspects
of the underlying phenomena (e.g., dimensions, dy-
namics, properties, interactions). This mathemati-
cal construct includes quantities called parameters.
Using a specific model, parameters are estimated for
each sample. Data per se are not needed to specify
the model or characterize the parameters. However,
knowledge of particular properties of the phenom-
ena that the data represent can and should be in-
cluded in proposing a model. Whatever characteris-
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tics the scientist deems important or explanatory
should be included in the model. To specify a model
in morphometrics, good statistical sense and solid
knowledge of the phenomena under study are
needed. If a model seems appropriate and correct,
methods for checking the assumptions of the model
can be developed (if they do not already exist) and
applied.

For example, in predicting height based on femur
length, we might use a simple linear regression
model that describes the relationship between
height and femur length of an individual. Data exist
for femur length and height of individuals in a sam-
ple, and are denoted as variables X and Y, respec-
tively. The statistical model used in this situation
is:Y = B, + B:X + e This model follows general
knowledge of body size estimators, and states that
the height of an individual is a linear function of
femur length of the individual with the addition of
some random variability, e. The parameters of this
model are the intercept B, and the slope B;. The
term e denotes the variability (sometimes referred to
as error) around the mean response, B, + B;X. Es-
timates of these parameters from the data provide
information about the nature of the relationship
between X and Y. The assumptions of the regression
model can be checked by analysis of the residuals.

Note that the observations (data) do not enter into
the specification of the model. A model is formulated
using statistical expertise and intuition, based on
whatever previous experience and knowledge the
scientist may have. Once a model is formulated,
data are used to determine those parameters of the
model that are most compatible with the observa-
tions. This process is called “estimation of the pa-
rameters.” In the example above, B, and B, are es-
timated from the data. Many methods for estimation
of the parameters may exist and may be equally
appropriate. A method is any technique used in es-
timating the parameters of the model and in further
analysis such as hypothesis testing or calculation of
confidence intervals. For example, in the linear re-
gression case, one can use a least squares method,
major axis method, or reduced major axis method for
estimation of the parameters.

When conducting any scientific study, a model
should be specified and understood first. Following
the specification of a model, methods should be de-
vised or chosen for estimating the parameters of the
model and for conducting any other relevant data
analysis. A particular method is judged as correct or
incorrect, appropriate or inappropriate, only in rela-
tion to its efficacy under a particular model. An
evaluation of the conclusions of any scientific anal-
ysis of data must consider the accuracy of the
method and the validity of the model.

Landmark coordinate data and the choice of
statistical models

When estimating statistical parameters for sam-
ples of forms represented by landmark data, a par-
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ticular perturbation model is commonly adopted.
This perturbation model specifies the variability of
the sample around the mean, and is used to estimate
parameters that describe the relationship of individ-
uals to the mean. We have already shown by way of
our galago example that the true relationship of the
forms as represented by landmark coordinate data
to the mean (mold) and to one another cannot be
known. The information is simply not provided in
the matrix of landmark coordinate locations. How,
then, can a perturbation model for landmark data
estimate the variation around the mean in terms of
the parameters of rotation and translation, if that
information is not contained in the data? To further
clarify the reasoning behind the commonly used per-
turbation model for landmark data and its failure
when applied to landmark data sets, basic matrix
algebra is used.

Let M denote the landmark coordinate matrix cor-
responding to the mold. If the coordinates of 10
three-dimensional landmarks were collected to rep-
resent salient features on the face and body of the
galago mold, then M is a matrix with 10 rows, one
for each landmark, and three columns, one for each
dimension. Since each galago that we have crafted is
slightly different than the mold, this variation can
be described as error, E;. The error is different for
each galago, as signified by the subscript i. Each
galago can be represented by M + E;. Recall that we
tossed the galagos onto a shelf and have therefore
moved them from their original position with refer-
ence to the mold, M. This movement can be de-
scribed by two additional parameters: rotation and
translation. The model that describes the collection
of galagos takes the form:

Xi = (M + Ei)ri + ti

where X; is the landmark coordinate matrix of the
ith galago, M is the mean form or the landmark
coordinate matrix representing the mold, E; is the
error or the variation that was added to each indi-
vidual during sculpting, I is the rotation, and t; is
the translation that happened when the galago was
dropped onto the shelf. This is the statistical model
commonly used in morphometrics to describe varia-
tion of individuals with reference to a mean form
(Bookstein, 1986; Dryden and Mardia, 1998; Good-
all, 1991; Lele, 1993).

Let us think further about the parameters of this
model for morphometric data sets. X; represents the
appearance of each individual in a sample (X, is the
first individual, X, is the second individual, and so
on). The mean form M has a fairly straightforward
interpretation. M represents the average appear-
ance of individuals in the population. The variance-
covariance of E;, the random variation about the
mean, and the specifics of this parameter refer to
perturbations at each landmark along each axis (see
Lele and Richtsmeier, 2001). A model may specify
that the variation is similar at all the landmarks or
different at each landmark, or there might be corre-
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lation between these errors along two or more of the
axes. Thus, E; tells us about the pattern of change in
the relative location of landmarks within a form
with reference to the average configuration of land-
marks. I'; refers to rotation of the entire form, and t,
refers to translation of the entire form with refer-
ence to the location and orientation of the mean, i.e.,
with reference to the way the mean mold was situ-
ated when fashioning the galagos.

Now remember that after sculpting eyes and styl-
ing ears and tails, we have all of the galagos but we
have lost the mold, M, that was used to create them.
Since the core of biology concerns the study of phe-
notypic variability, there are two parameters that
need to be estimated correctly: the mean (or aver-
age) which is now lost, and the variability around it.
Can we somehow use the galagos that we fashioned
(the data) to recreate the mold, at least approxi-
mately? Can we also estimate the pattern of vari-
ability around the mean form from the data? It is at
this juncture, at the point of estimation of parame-
ters for a single sample, that the consequences of
tossing the galagos onto the shelf (i.e., the introduc-
tion of rotation and translation) loom large with
profound consequences.

Estimation of parameters: what can be known
and estimated from a sample?

Let us consider the number of unknowns in the
model, X, = (M + E)I'; + t,. The mean form, M,
and variance-covariance structure of the errors, E;,
are unknown. In addition, the rotation and transla-
tion parameters, I'; and t;, are unknown. The param-
eters M and the variance-covariance structure of E;
are fixed, meaning that they are constant with ref-
erence to the sample size. However, the parameters
I'; and t; are different for every specimen, because
each individual has a unique orientation with refer-
ence to the mean. This means that we have a total of
(2 + 2n) unknowns for the given equation, the 2
referring to M and the variance-covariance of E, for
the sample,! and the 2n referring to I'; and t; for each
individual in the sample of size n. The number of
unknowns (2 + 2n) is therefore larger than the sam-
ple size (n). A basic tenet of inferential statistics is
that one cannot estimate more parameters than the
number of observations. Therefore, the parameters
I'; and t; are unknown and cannot be estimated.

If these parameters cannot be estimated, then
why are they commonly estimated by certain mor-
phometric techniques? Just because parameters are
statistically inestimable does not mean a computer
program won't estimate something when you ask for
it. But just because a parameter is estimated does
not mean it is correct. Given the nature of most

!Although, M, T, t,, etc., are matrices, for the sake of exposition we
consider them as single entities. Strictly speaking and in mathemat-
ical terms, the number of parameters is of O(n), which is the same

order of magnitude as the sample size.
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morphometric software, the user can be unaware
that the estimates given could be invalid.

In statistical terminology, the rotation and trans-
lation parameters that are not of scientific interest
are known as nuisance parameters. Neyman and
Scott (1948) were the first to point out the problem of
nuisance parameters. Lele (1993) originally de-
scribed the consequences of the inclusion of nuisance
parameters in morphometrics. The existence of nui-
sance parameters in the statistical model makes the
accurate estimation of parameters of interest diffi-
cult. The rather dire penalty for including nuisance
parameters in a model is that neither the mean
form, M, nor the variance covariance matrix, E;, can
be estimated from the data. Likelihood-based meth-
ods that attempt such an estimation do not work
properly.

From a scientific point of view, these nuisance
parameters are of no real interest because knowl-
edge of the orientation of an object with respect to its
original position (as characterized by the rotation
and translation parameters) is unimportant. Think
of our galagos example: do we really want to know
the path that each galago took as it was transferred
from the mold to the shelf? We are really only inter-
ested in the mean form, M, and the variance-covari-
ance structure of the errors, E,. If the reader agrees
that rotation and translation of the specimens with
relation to the original position are uninteresting
and unnecessary to the scientific question being
asked, then the situation is less dismal. If we focus
only on M and the variance-covariance of E;, then
the number of unknowns is fixed and does not
change with sample size.

So, how can the mean and variance covariance
structure be estimated correctly? To understand
how landmark data can be used for statistical anal-
ysis of biological forms, we need to carefully consider
the mathematical definition of “form:”

The form of an object is that characteristic that remains invari-
ant under any translation, rotation, or reflection of the object.

This definition requires that we use the coordinate
data to summarize form without using a coordinate
system. Put in the context of our galago example,
this definition means that the exact coordinates of
the mold of the galago in its original orientation, M,
are not important if we are interested in the study of
form. Instead, we express the data in such a way
that all translated, rotated, and/or reflected versions
of M are equivalent, and any of them will suffice for
our scientific purpose.

For example, let us say that a form P consists of
three two-dimensional landmarks that are arranged
on a single sheet of paper. Think of making hun-
dreds of exact copies of that form by simply copying
the piece of paper. If you drop that stack of copies
onto the floor, the forms remain congruent and differ
only on the basis of orientation; i.e., they are rotated,
translated, and reflected versions of the original.
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Let us assume that besides the actual coordinates
of the three landmarks that make up P, we have the
following information: together the three landmarks
form an equilateral triangle, and the length of one
side of P is known. Knowing that the form is an
equilateral triangle and knowing the length of one
side provide all the information we need to recon-
struct P up to translation, rotation, and reflection,
i.e., if we are not choosy about the orientation of P.
According to the definition of form given above, we
do not need the coordinates of the landmarks to
define the form. Any particular coordinate-based
representation of P is equivalent to all other repre-
sentations of P expressed in any other coordinate
system, as they differ only on the basis of transla-
tion, rotation, and/or reflection, and our definition
does not include that information. All equilateral
triangles with legs of a given length have the same
form. Formally, we say that all equilateral triangles
with legs of a given length (the various coordinate
system-based representations of the form P that fell
onto the floor) are invariant under rotation, trans-
lation, and reflection, and that they occupy an orbit
defined by P.

In landmark-based morphometrics, the collection
of all landmark coordinate matrices that can be
obtained by any rotation, reflection, and translation
of a given landmark coordinate matrix is the orbit.
All landmark coordinate matrices within any single
orbit characterize exactly the same form, because
they differ only on the basis of translation, rotation,
or reflection. We cannot know the exact location of
any particular landmark coordinate matrix on the
identified orbit, but in knowing the orbit, we know
the form. The concept of orbit is closely related to the
invariance principle, and is used routinely in statis-
tics. Berger (1980) provides a precise definition of
orbit in a statistical context.

As an aid to understanding the idea of an orbit
and the definition of form with respect to orbit, con-
sider a topographical map of a mountainous area.
Each contour on a topographic map corresponds to a
surface of constant (equal) elevation. No matter
where a point lies in longitude or latitude, elevation
remains the same as long as the point stays on the
defined contour. In other words, as long as a point
remains on a single contour line, elevation is invari-
ant with respect to latitude and longitude.

Suppose that a person is hiking on the surface
described by the topographic map (Fig. 5). Suppose
further that this hiker carries a sensor that sends
out a signal that identifies his elevation exactly, but
only his elevation. We would like to locate this hiker,
but if our data consist only of the signal from his
sensor, we can place the hiker onto a contour (the
orbit) defined by a particular elevation, but not to
any specific location along that contour. This is anal-
ogous to the limitations of our knowledge when deal-
ing with landmark coordinate data and asking ques-
tions about the parameters. We can know the form
(as defined previously) of an object precisely, but we
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Fig. 5. Each band on this topographic map indicates a region
in which elevation is the same. We highlight the distribution of
two elevation bands, one at 800 feet and one at 1,400 feet. Con-
tiguous bands indicate changing elevation as measured in verti-
cal feet. Where bands are close together, topography is steep.
Where bands are wider, the increase or decrease in elevation is
more gradual.

can never know the exact orientation of a form. All
rotated, translated, and reflected versions of any
form are geometrically congruent.

Remember that M is a coordinate matrix of two or
three dimensions. Consider the infinite number of
matrices that can be obtained by rotating, reflecting,
and translating M. Since there has been no change
in the relative locations of landmarks, all of these
matrices represent forms identical to M and can be
considered equivalent to one another. The collection
of all matrices equivalent to M so obtained is the
orbit defined by M (Fig. 6). Each rotated or trans-
lated version of M occupying the orbit defined by M
is considered an element of the orbit. The only way
to specify the element is to provide its rotation and
translation with respect to M. Except for very spe-
cific biological questions, it is sufficient to know the
orbit of M, but it is not necessary, nor is it possible,
to know the exact element of the orbit.

The critical question then becomes: given land-
mark coordinate data, can we estimate the orbit to
which M (the mold) belongs? The answer is, yes. One
way to do this is to rewrite the landmark coordinate
matrix as a matrix of all possible linear distances
among unique pairs of landmarks. Since the matrix
of linear distances does not change with rotation,
translation, or reflection of the form, by defining the
matrix of linear distances between unique pairs of
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Fig. 6. Form of an object (here a triangle) is that character-
istic that remains invariant under any translation, rotation, or
reflection of an object. The form, free of a referential coordinate
space, is equivalent to the orbit (shown at right) of all possible
rotations, translations, and reflections of the data.

points, we define the orbit to which that form be-
longs. Unfortunately, only certain features of the
variance-covariance matrix associated with the er-
rors E; can be estimated. The mathematical details
of this condition are beyond the scope of this presen-
tation, but those interested may consult Lele and
Richtsmeier (2001). We have shown elsewhere that
the features of E; that can be estimated are suffi-
cient for conducting null hypothesis testing and for
estimating confidence intervals for difference in
form (Lele, 1991; Lele and Richtsmeier, 1995).

There are several methods available for the esti-
mation of the orbit of M as well as for the variance-
covariance structure of E;. To make an educated
choice of which method to apply to data, several
issues should be addressed. Issues that need to be
considered when evaluating the validity and perfor-
mance of methods used for estimating parameters
for a single sample include but are not limited to
bias, consistency, and efficiency of an estimator. Def-
initions of these criteria are provided in the Appen-
dix. With these qualities in mind, three of the
methods used for estimation in morphometrics are
discussed below.

1) Method of moments. The method of moments es-
timators of the mean form and the variance-co-
variance structure suggested by Lele (1993) are
consistent and simple to compute.

2) Generalized Procrustes. The generalized Pro-
crustes method of estimation, as well as the esti-
mator suggested by Bookstein (1991) based on
shape coordinates, yield inconsistent estimators
of the mean form, mean shape, and variance-
covariance structure under realistic models
(Kent and Mardia, 1997; Lele, 1993).

3) Maximum likelihood. The maximum likelihood
estimators suggested by Dryden and Mardia
(1998) are consistent. They are a bit more effi-
cient than the method of moments estimators
suggested by Lele (1993), but they suffer from
computational problems of nonconvergence (see
Appendix) of the numerical maximization routine
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(Lele and McCulloch, 2002; Lele and Richts-
meier, 2001).

In general, for a given set of data, these methods
all give fairly similar mean form and mean shape
estimators. However, generalized Procrustes analy-
sis estimators of the variance-covariance matrix are
flawed (for an illustration and reasoning, see Lele,
1993). A consequence of incorrect estimation of the
variance-covariance matrix is that the statistical in-
ference procedures that utilize generalized Pro-
crustes estimators can produce inaccurate results,
since all statistical testing procedures are based on
the estimation of the variance-covariance matrix.
Walker (2001) recently reiterated the conclusions of
Lele (1993) by reporting the inability of Procrustes
methods to estimate the correct variance-covariance
structure and the associated implications for statis-
tical inference. Although Procrustes may be the
most common method of estimation in morphomet-
rics, the variance-covariance structure estimated is
wrong. This estimate is crucial for statistical testing
and ultimately for making inferences about how or
why organisms differ, since these inferences are of-
ten based on the results of statistical tests. We pro-
pose the use of either the method of moments esti-
mators or the maximum likelihood estimators that
are based on the exact shape density.

Estimation of parameters is a critical step in the
quantitative description of a single sample. We have
presented the galago experiment, mathematical ev-
idence, and the hiker analogy to demonstrate that
the mean form and variance estimated for a sample
represented by landmark data can only be known up
to translation, rotation, and scaling. That is, the
mean and variance can only be estimated correctly if
the nuisance parameters of rotation and translation
are not included in the estimation procedure. Below,
we discuss the consequences of this finding for the
scientific problem of form comparison.

What can be known about the difference
between forms?

The fact that we can never know the orientation of
objects as they relate to one another presents anal-
ogous problems for the comparison of samples of
forms, and for the testing of statistical hypotheses.
To understand the limitation as it relates specifi-
cally to determining the difference between forms,
let us continue with the hiker example. Suppose we
know that our hiker started his hike at a contour
associated with an elevation of 800 feet above sea
level, but that he is now at a contour associated with
an elevation of 1,400 feet. If our information about
the hiker remains limited to elevation, we have no
information regarding his exact starting or finishing
place, and can only know with certainty that the
hiker has ascended 600 vertical feet. This result is
invariant to the exact location of the hiker on the
initial contour and to the location of the hiker on the
final contour. Although we would like to locate the
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hiker and describe the exact path followed to gain
this elevation, without further information we can-
not. We can assign a “sensible” starting point for the
hiker, but this information is not verifiable and may
prove wrong or misleading. The description of the
exact path and his final location can be provided if,
and only if, we know exactly the point where the
hiker started and every intermediate point that he
traversed as he attained the higher elevation. If our
information is limited to elevation of his start and
his finish, we simply do not have the information to
obtain a description of his path.

This is similar to the information available when
forms are compared. We can unambiguously know
the orbit of the first form and the orbit of the second
form, but we cannot know the exact location of the
forms on their respective orbits, nor the exact trans-
formation required to shift from one grbit to an-
other, as there are infinitely many possible transfor-
mations. We can assume a location on the initial
orbit (i.e., choose an orientation) and assume a loca-
tion on the second orbit, but neither of these is
verifiable, and any specified choice may prove wrong
or misleading. Since we can only know the orbit to
which a form belongs, the difference between forms
can only be studied correctly as the difference be-
tween orbits that the forms occupy.

Let us assume that we know there is a long trail
that includes several sets of steps between the ele-
vations of 800 and 1,400 feet (Fig. 7). The most
parsimonious conclusion to our question of the way
in which the hiker moved from 800 to 1,400 feet is
that the hiker used this path to gain 600 feet in
elevation. But perhaps the path was designed for
average climbers, and this particular hiker prefers a
challenge. The hiker forges trails up embankments
and scales nearly vertical walls to reach 1,400 feet.
Unfortunately, we do not have this information, and
our assumption of parsimony forces our interpreta-
tion of the hiker’s route onto the easiest trail. If the
hiker is actually a world-class climber, the assump-
tion of parsimony provides us with incorrect infor-
mation regarding the hiker’s beginning and ending
points and how he got from the starting point to the
ending point. As scientists, our choice is either to: 1)
use only the information that is known and limit our
answer to what we are sure of, or 2) include assump-
tions that are not testable (and may be wrong), but
that provide a more “complete” or “satisfying” an-
swer. Inclusion of information other than what is
unambiguously known may provide a seemingly
more complete, but potentially erroneous answer.

As morphometricians using landmark data, we
are forced to establish the true form difference using
a coordinate system because that is the nature of the
data that have been collected. Whether or not a
pre-established universal 3D coordinate system ex-
ists in nature is a subject for philosophical debate,
but whether we can know the true difference be-
tween biological forms represented by landmark
data is not. If we cannot know the true difference
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Fig. 7. Two of the infinite possible routes that could be taken
from elevation of 800 to 1,400 feet by our hiker are shown as
dotted lines on this topographic map. Stars designate the two
possible starting and ending positions of each path. One path is
long and gentle; the other is short and steep. To determine the
hiker’s route, we can assume parsimony and conclude that he
took the longer, undemanding, but well-used path indicated. This
assumption forces a choice in the hiker’s exact starting and end-
ing location, although it is equally probable that he took another
route with a different starting and ending position, as indicated
on the map. This situation mimics what is done when superim-
position or deformation methods are used to determine difference
in forms. Since landmark data do not provide information about
orientation of forms, an orientation must be chosen for the initial
form. Other forms adopt this orientation and are “fit” to the
beginning form. “Fit” is determined by choice of minimization
criteria (the path). Data do not to indicate which fitting criterion
should be employed; the choice is arbitrary and has direct impli-
cations for the results of any analysis.

between forms using certain approaches, but only
multiple answers that differ on the basis of the cho-
sen alignment criteria, why waste our time with
morphometrics? Scientific inquiry is aimed at dis-
covering the truth. If forms exist, a true form differ-
ence exists, and there are ways to determine it using
morphometric approaches.

We showed in a previous example that the deter-
mination of the locus of craniofacial deformity in
Apert syndrome, a genetically transmitted condition
that causes syndactyly of the hands and feet and
severe craniofacial malformations, shifts depending
on the edge chosen for superimposition (Richtsmeier
and Cheverud, 1986; Lele and Richtsmeier, 2001, Fig.
4.3). It is on the basis of these types of studies that
surgeons plan reconstructive surgery for children with
Apert syndrome. If one superimposition scheme iden-
tifies the loci of the deformity at the base of the poste-
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rior cranial fossa and the lower face, while another
shows the upper face to be primarily affected, on what
structures does the surgeon operate? What informa-
tion informs the surgeon which superimposition is the
true one, which structures are truly deformed, and
how he should plan his surgery? The arbitrary choice
of a superimposition scheme should not influence the
surgical procedure.

Dissimilar outcomes from the application of differ-
ing registration systems are not different descriptions
of the same answers; they are different answers to the
same question. The need for determining the true form
difference is made clear from this example, but are
questions relating to evolution, ontogeny, or function
any less worthy of a valid answer? The existence of a
true coordinate system has no bearing on whether or
not we can accurately determine the true difference
between forms. All that is needed is a method that
uses only the information that can be known from the
landmark data. When using landmark data, the infor-
mation that is unambiguously known consists of the
identification of the orbit on which the forms lie. An
invariant descriptor of form change utilizes only this
unambiguous information and describes the difference
between forms in terms of the orbits that the forms
occupy.

The relationship of morphometric spaces to
parameter estimation and statistical testing

The past 10 years of morphometric research have
resulted in the conceptualization of a surprising
number of different “spaces” that are used for the
analysis of morphology. Lively discussion has cen-
tered on the positive and negative aspects of these
spaces that include, among others, Kendall’s shape
space (Kendall, 1994), Kent’s tangent shape space
(Dryden and Mardia, 1998), and form space (Lele
and Richtsmeier, 2001; Richtsmeier and Lele, 1993).
What are these spaces, and how do they relate to the
space of coordinate matrices and orbits that we dis-
cussed above? Is any particular space statistically
better than any other space? How can the claims
about the statistical superiority of one space be
evaluated?

Previously, we discussed the concepts of equiva-
lent forms and the orbit defined by these equivalent
forms. A maximal invariant statistic is any function
that maps the entire orbit (i.e., the infinite collection
of all equivalent forms, or all possible rotations and
translations of a given form) onto a single point. One
such function is the form maitrix used in Euclidean
distance matrix analysis (EDMA) (Lele and Richts-
meier, 2001). Another such function is shape coordi-
nates, used by Dryden and Mardia (1998). These are
just two of all the possible functions that share this
property. Many similar functions can be con-
structed. A particular range, or a set of values that
the function can take, identifies each function. The
range is the defining feature of the space. The choice
of the function then determines the characteristics
of the shape space or form space obtained. The char-
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acteristics of the space determine the appropriate
statistical approaches for analysis within the chosen
shape space or form space.

All maximal invariants are statistically equiva-
lent and have identical distributions.? In morpho-
metrics, the key concept is the orbit. In any given
space, a maximal invariant is described by a given
function. The function (and by extension, the space)
that is chosen to represent the orbit is not critical.
An orbit defined by two different maximal invari-
ants (in two different spaces) is still the identical
orbit; it does not matter which maximal invariant is
chosen. It follows that all shape spaces (as long as
they are maximal invariants) are statistically equiv-
alent, and all form spaces (as long as they are also
maximal invariants) are statistically equivalent.
Some spaces might be mathematically more conve-
nient than others, but statistical inferences (such as
maximum likelihood estimation) conducted in one
space are by definition identical to similar infer-
ences conducted in any other space. The ability to
correctly identify the parameters depends on iden-
tification of the orbit and not on the use of a partic-
ular maximal invariant.

Why then do investigators make claims that
certain methods operate “better” than others in
particular spaces? If all the functions are similar,
how can it matter which function is chosen for
analysis? Let us consider the problem of classifi-
cation as an example. Suppose we use a particular
dissimilarity measure such as Mahalanobis dis-
tance for classification when studying forms in a
particular form/shape space. This distance mea-
sure is only appropriate if the form or shape space
is a Euclidean space, e.g., if the space is ordinary
three-dimensional space. If it is not a Euclidean
space, then Mahalanobis distance is an inappro-
priate choice, and another distance measure
should be used. Most of the shape and form spaces
referred to in the literature are not Euclidean
spaces. It is possible therefore that an investigator
could get very odd results if Mahalanobis distance
were used for classification in one of the many
non-Euclidean spaces. The important thing to re-
member is that any shape space can be chosen for
analysis, but any metric or statistic used within a
space must be compatible with the characteristics
of that space. In short, it does not matter if a space
is Euclidean or non-Euclidean. What matters is
that the method chosen to analyze phenomena
within a space is appropriate to that space.

When studying form and the difference in form
using Kendall’s shape space, all forms are first
aligned using Kendall shape coordinates. Once reg-
istered, each form can be represented as a single

2All maximal invariants are statistically equivalent. The distribu-
tions of all maximal invariants are identical, except for a constant
multiplier corresponding to the Jacobian of the transformation be-
tween invariants.
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point on the sphere that is Kendall’s shape space.
Procrustes distances are used as a metric on this
space. Rohlf (2000) asserts that similar objects have
low variance and thus will be tightly clustered in
Kendall’s shape space. However, we emphasize here
that variability as measured in Kendall’s shape
space is not the same as the variability indicated by
the variance-covariance parameter in the perturba-
tion model.

When forms are tightly clustered in Kendall’s
shape space, a space can be defined on a plane tan-
gent to Kendall’s shape space; this plane is called
Kent’s tangent space. Once defined, forms can be
projected to Kent’s tangent space. This is a critical
projection, because unlike most shape spaces, Kent’s
tangent space is a Euclidean space and therefore the
use of standard multivariate statistical analysis
tools is permitted.

As noted above, the assumption of small within-
sample variance is commonly used as the condition
for using Kent’s tangent shape space. Since biologi-
cal variation is the single most important issue that
we study, it seems counterintuitive to assume small
variance to enable the use of a specific method and
shape space. Moreover, if we assume small variance
but variance is in fact large and irregular over an
organism (see Lele and Richtsmeier, 1990), Kent’s
tangent shape space is unsuitable for the study of
form difference.

The arrangement of forms in Kendall’s shape
space and the spread of the same forms in Kent’s
tangent space appear different. Similarly, the ar-
rangement of the same forms in the EDMA-based
form space will look quite different from the ar-
rangement seen in Kendall’s shape space. This, of
course, does not mean that either Kendall’s shape
space or Kent’s tangent space or the EDMA-based
form space is wrong. The range that defines each of
these spaces is different, so we expect that the same
forms projected into different spaces will take on a
different arrangement. Additionally, since the range
of the various spaces is different, different metrics
are required to measure form difference in each
space. In other words, a metric appropriate for mea-
suring the difference between forms, or variability
among forms, in one space is most likely inappropri-
ate for use in another space.

Rohlf (2000) concluded that form space is errone-
ous because the classification obtained when using
this space differs from the classification obtained
using Kendall’s shape space. Contrary to his conclu-
sions, the difficulty reported by Rolhf (2000) does not
arise due to a problem inherent to any particular
shape space. Instead, it arises because the statistical
technique applied is not compatible with the char-
acteristics of the particular space. This problem is
closely related to the reason why the standard for-
mula for calculating variance cannot be used in all
shape spaces. It was established that the usual vari-
ance calculation cannot be applied to the shape
space used in Procrustes analysis (Lele, 1993; Lele
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and Richtsmeier, 2001; Walker, 2001). Similarly,
the problem described by Rohlf (2000) lies in the
inappropriate application of a valid statistical tech-
nique rather than the inadequacy of a particular
shape space for conducting statistical inference.
Only when appropriate statistical techniques are
applied within a particular space can they be eval-
uated on the basis of validity, power, and effect size.
Short definitions of these concepts are given in the
Appendix.

Morphometric methods have provided new ways
to think about and to measure form and form
change. The user needs to take care that the metrics
used are appropriate to the method. When a metric
is used, it is desirable to obtain a statistical evalu-
ation of the measured difference. However, if the
method applied is not valid, it makes little sense to
discuss the statistical properties of the estimates or
of the results. Some of the available morphometric
methods are discussed next.

MORPHOMETRIC METHODS FOR STUDYING
FORM DIFFERENCE

One can study the differences between forms us-
ing any one of the methods that belong to three
broad classes: superimposition methods, deforma-
tion methods, and methods based on linear dis-
tances. We examine these methods in detail below,
and assume that the mean form is obtained using
either the method of moments or the method of
maximum likelihood for each of the two samples
under study. We then analyze a hypothetical data
set, using methods from each of these classes.

Superimposition methods

Superimposition methods involve the arrange-
ment of landmark data from two forms into the same
coordinate space, according to a specified rule. One
form is designated the “reference” form, and the
other is designated the “target” form. Form change is
determined by the displacement of landmarks in the
target form from the corresponding landmarks in
the reference form. The researcher chooses a partic-
ular rule of superimposition. For example, in clinical
cephalometric x-ray studies, a registration-based
method of superimposition is often used, where trac-
ings of x-rays are superimposed on the landmark
sella (i.e., translated, so that sella, the centers of the
pituitary fossa on each form overlay each other ex-
actly) and registered (i.e., rotated to a standardized
position) along the line sella-nasion. Historically,
this superimposition was chosen based on the as-
sumptions that sella is the most stable landmark in
the cranium, and that the anterior cranial fossa is
relatively stable. By choosing this superimposition
rule, however, any true displacement of the land-
mark sella is concealed, displacement at the nasion
will be constrained, and those changes will be attrib-
uted to other landmarks (Lele, 1991; Moyers and
Bookstein, 1979; Richtsmeier and Cheverud, 1986).
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All superimposition techniques (e.g., Procrustean
approaches, Bookstein’s edge matching, and roent-
genographic cephalometry) involve three steps:

1) Fix one of the mean forms in a particular orien-
tation and call it the reference object.

2) Translate and rotate the other mean form so that
it matches the reference object according to some
criterion.

3) Study the magnitude and direction of difference
between forms at each landmark.

Different criteria for matching provide different
superimpositions. For example, the least squares
criterion (where the forms are superimposed so that
the sum of the squared distances between corre-
sponding landmarks on the two forms are mini-
mized) leads to a generalized Procrustes super-
imposition. Matching a specific edge leads to the
superimposition used in roentgenographic cepha-
lometry (Broadbent et al., 1975) and to that obtained
using Bookstein’s edge-matching approach (Book-
stein, 1982). It is commonly stated that differences
in rotation, translation, and scaling of forms are
removed or eliminated by superimposition. How-
ever, in all superimposition approaches, the align-
ment of forms is based on the estimation of the
parameters of rotation, translation, and scaling. Su-
perimposition does not remove differences due to
these parameters; instead, it incorporates this reg-
istration into the definition of form and the differ-
ence between forms for any particular analysis. The
nuisance parameters are not eliminated once esti-
mated. They are fixed arbitrarily and then ignored.

If the scientific inferences obtained using different
superimposition schemes were identical to each
other, then the use of varying superimpositions
would not pose any real problem. However, as is
clear from our analysis of simulated data sets (see
below) and various other sources (e.g., Lele, 1991,
1999; Lele and Richtsmeier, 2001; Richtsmeier,
1987; Richtsmeier and Cheverud, 1986; Rohlf and
Slice, 1990; Siegel and Benson, 1982), different su-
perimposition schemes give different results that
yield different scientific inferences. How does an
investigator choose which superimposition to use?

Siegel and Benson (1982) suggested that a gener-
alized Procrustes fitting criterion should be used
when the difference between forms is spread evenly
over the objects, while a robust superimposition
technique should be used if the difference between
forms is concentrated in a circumscribed region (for
a similar comparison of superimposition techniques,
see Rohlf and Slice, 1990). Could data collected for
scientific purposes ever instruct us in choosing one
superimposition scheme over another?

Think of comparing two samples using two differ-
ent fitting criteria, e.g., generalized Procrustes anal-
ysis, and robust or resistant fit analysis. The super-
imposition obtained by the use of each fitting
criterion can each be thought of as a hypothesis
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pertaining to the difference between the forms. Crit-
ical to any scientific hypothesis is its potential for
falsification (Popper, 1959). Platt (1964) argued that
an alternate characteristic, the possibility of choos-
ing between competing hypotheses, is the hallmark
of scientific method (see also Chamberlain, 1965). To
fulfill this characteristic, it is required that, given
enough data, the hypothesis that most closely ap-
proximates the truth can be selected from two com-
peting hypotheses. If this cannot be done for a pair of
hypotheses, then the two hypotheses are considered
indistinguishable, given the data. Since no informa-
tion is incorporated in landmark data to inform the
investigator of which superimposition scheme to use
in analysis, even infinite data sets will not allow us
to properly choose among fitting criteria.

Obviously, if the two hypotheses (in our case, the
result of the application of two superimposition
schemes to the same data set) lead to identical sci-
entific inferences, then the inability to statistically
distinguish between the hypotheses does not present
a problem. However, if the scientific inferences and
decisions made on the basis of one hypothesis as
opposed to the other are different, the inability to
distinguish the correct hypothesis from competing
hypotheses has far-reaching consequences. If even
an infinite amount of data cannot guide us in deter-
mining the appropriateness of our conclusions, then
we are scientifically bankrupt. One solution is to
address only those scientific hypotheses that can be
distinguished given the type of information that is
realistically available (for a more detailed discussion
of this idea, see Lele and McCulloch, 2002). Alterna-
tively, the scientist is left to either arbitrarily choose
a hypothesis from the set of indistinguishable hy-
potheses, or choose one on the basis of assumptions
that cannot be demonstrated. This seems rather dis-
satisfying.

In statistics, situations that lead to indistinguish-
able hypotheses occur due to “nonidentifiability of
the models.” A classic example is that of factor anal-
ysis, where it has been shown that data can be
rotated to obtain any factor loadings desired by the
research scientist (Kowalski, 1972). No amount of
data can reveal the set of factor loadings that is the
most appropriate. Practitioners of factor analysis
routinely impose conditions on the factor loading
such as Varimax (SPSS, Inc., 1998). These side con-
ditions are purely a choice of the experimenter, and
the conclusions are a function of this choice. Though
it seems more trouble than it is worth, one could
conceivably decide on a final answer and then choose
an appropriate side condition (superimposition
scheme) that supports a favored conclusion!

This example demonstrates that the property of
nonidentifiabilty is not unique to morphometrics. It
also illustrates the problem associated with the
choice of superimposition schemes. It can be shown
in a mathematically precise fashion (Lele and Richts-
meier, 2001; Lele and McCulloch, 2002) that no
amount of data can ever guide us in choosing be-
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tween different superimposition techniques. The
choice of minimizing the sum of squared distances
(least squares fitting), minimizing the sum of the
distances (robust fitting), or matching a prespecified
edge (Bookstein’s edge matching, roentgenographic
cephalometry) is as arbitrary as the choice of rota-
tion parameters in factor analysis (e.g., Varimax,
Quartimax, Parsimax). Conclusions drawn from su-
perimposition schemes are, therefore, a function of
the choice of the superimposition criterion, and this
may or may not correspond with the data.

Despite these drawbacks, many researchers find
superimposition methods useful, in part because
they produce clear graphic output. The adoption of a
coordinate system and the placement of all forms
into this coordinate system allow form or shape dif-
ferences to be illustrated as absolute displacements
of landmarks. Programs employing superimposition
methods are freely available at the SUNY Stony
Brook Morphometrics website, http://life.bio.sunysb.
du/morph/.

Deformation methods

Deformation methods take the area or volume of a
reference form and deform it to correspond with that
of the target form. Sir D’Arcy Thompson’s work
(Thompson, 1992) is the earliest best-known exam-
ple of the use of a deformation technique for the
demonstration of the difference between forms.
Thompson traces the application of the principle of
coordinates to the study of proportion by Diirer
(1613; as cited in Thompson,1992). D’Arcy Thomp-
son created “transformation grids” where an orthog-
onal, two-dimensional grid was placed over one
form, and the grid was transformed to correspond to
the morphology of the second form. The change in
the grid described the difference in forms. Regional
changes in form were relatively simple to interpret
from the graphic product of the transformed grid.
Unfortunately, Thompson’s work referred more to
outlines than to landmarks, and he did not propose
any quantitative method for creating these grids.

The main idea behind deformation approaches is
straightforward:

1) Choose one of the forms as the reference object.

2) Deform the target object so that after deforma-
tion it matches the reference object exactly.

3) Study the deformation to learn about the differ-
ence in the forms.

Deformation techniques that have been used to
study morphological differences between forms un-
der the label of geometric morphometric methods
include finite-element scaling analysis (Cheverud et
al., 1983), adopted for biological applications from
the field of engineering, and thin-plate splines
(Bookstein, 1989), developed originally in the field of
approximations theory. In finite-element scaling
analysis, the scientist is required to subdivide the
landmarks located on an object into groups that
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form elements. A homology function (Lewis et al.,
1980) maps the location of landmarks from the ini-
tial to the target form, and maps the location of all
mathematically homologous points internal to each
finite element in the initial form to a corresponding
location in the target form. The homology function
used in finite-element scaling analysis is rather gen-
eral, though in theory this function can be designed
to model material properties or other relevant fea-
tures of the organism.

Thin-plate splines is a deformation technique that
uses chosen functions to map the relative location of
points in the initial configuration to their corre-
sponding locations in the target form exactly. The
functions are also used to predict how points that lie
in those areas between landmarks in the initial form
are arranged on the target form. The function that is
chosen to obtain this map is designed to satisfy a
particular smoothness criterion, such that a given
quantity (e.g., bending energy) is minimized. To
imagine this process, think of placing a continuous
and bendable surface (or plate) over the area or
volume encompassed by the landmarks. This plate is
then deformed in such a way that: 1) corresponding
landmarks in the two objects are mapped to one
another exactly; and 2) the quantity of a specific
parameter, often bending energy, within the func-
tion is minimized. This means that only the minimal
amount of energy required to bend the plate to con-
form to the target object is used.

A closer look at deformation approaches reveals
that they possess some of the same unfortunate
characteristics as superimposition techniques. In fi-
nite-element scaling analysis, the homology function
determines the deformation obtained and analytical
output changes when the element design is changed
(Richtsmeier et al., 1990). In thin-plate splines, the
mapping of points from initial (one coordinate sys-
tem) to final configuration (another coordinate sys-
tem) depends on the interpolation function used,
and the mapping of those points that lie between
landmarks depends on the nature of this function. If
the function changes (i.e., something other than
bending energy is minimized), the deformation or
bending of the plate is done differently. This results
in varying graphical output for the same comparison
using differing interpolation functions (Fig. 8).

Figure 8 shows the different results obtained
when different deformations are used to compare
the same two forms defined by a set of landmarks.
Since the choice of a particular deformation affects
the results obtained, we need to determine whether
the data can help us choose between competing de-
formations. The answer is the same as it was in the
case of superimposition: no amount of landmark
data can lead us to choose between alternative de-
formations. Consequently, the scientific conclusions
drawn from the graphics obtained by deformation
approaches can be due more to the choice of the
deformation than to the information in the data.
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Fig. 8. Deformation of a group of landmarks, using the thin-
plate spline. Coordinates for landmarks of the initial configuration
and target configuration were taken from Bookstein (1991, p. 320).
a: Original square grid shows arrangement of landmarks before any
deformation. b: First deformation shows effect obtained when min-
imum bending energy is used as the interpolation function (Book-
stein, 1991). ¢: Second deformation shows the effect obtained when
the approach of Rohlf (1993a) is used, that implements weights
inversely proportional to squared distances between landmarks.
Scientific inference would be different for two deformations that
describe the difference between identical data sets.

The drawbacks of these assumptions notwith-
standing, many researchers take advantage of the
attractive graphic output of these methods. Some of
the more elaborate programs were developed for
commercial profit and are prohibitively expensive,
but software utilizing deformation methods is freely
available on the Internet. Programs implementing
the thin-plate spline method are available at http://
life.bio.sunysb.edu/morph/. A finite-element scaling
analysis program (FIESCA) is available at http:/
oshima.anthro.psu.edu.

Linear distance-based methods

Linear distance-based methods compare linear
distances that connect landmark pairs in one form
with the corresponding linear distances in another
form, and provide information pertaining to the dif-
ference in length of these linear distances. By com-
paring linear distances rather than landmark coor-
dinate data, these methods require no a priori
assumption: no rule of superimposition; no discreti-
zation of the form into smaller units that comprise a
finite element model; and no adoption of arbitrary
rules such as minimum bending energy used with
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the thin-plate spline or the homology function in
finite-element scaling analysis. This characteristic
makes linear distance-based methods preferable in
our estimation.

The main idea behind this approach is simple:

1) For each specimen, rewrite the landmark coordi-
nate matrix as a matrix of the linear distances
between all unique pairs of landmarks (the “form
matrix”). There is a one-to-one correspondence
between a form matrix and the orbit defined by a
form. For morphometric analyses using samples,
a mean form matrix is estimated for each sample.
Estimating the mean form matrix is the same as
estimating the orbit to which the mean form be-
longs. The mean form matrix remains invariant
under any translation, rotation, or reflection of
the object.

2) Compare each like-element (linear distance) of
the form matrices as a ratio, or an absolute dif-
ference or some other metric.

3) Study the matrix of linear distance comparisons
to determine the difference in the forms and the
difference for specific linear distances.

Examples of linear distance-based methods are
Euclidean distance matrix analysis (or EDMA, pro-
nounced ed'ma, Lele and Richtsmeier, 2001) and its
variations as suggested by Rao and Suryawanshi
(1996). EDMA (referred to as “the temptingly simple
method of cross ratios” by Bookstein, 1991) was in-
troduced relatively recently, but represents an old
idea: measuring all possible chords between land-
marks just as if these linear distances had been
painstakingly recorded using calipers. The analysis
is simple and not radically different from traditional
morphometric approaches. The important distinc-
tion is that results from EDMA are based on what
can be known about the form of an object and about
the difference in form between objects, and takes
into account the nonestimability of rotation and
translation parameters. The descriptors used in
EDMA are invariant to the identification of the par-
ticular elements of the two orbits corresponding to
the two forms. In other words, the form matrix does
not change, no matter where the form is or how it is
oriented. However, many discussions of the draw-
backs of EDMA point out that it does not provide the
alluring graphics available from other morphomet-
ric techniques. These critics do not understand that
these graphic displays require adoption of one or
more a priori assumptions, thereby influencing the
results (or the display of results).

Nonparametric statistical methods developed for
EDMA provide summary statistics of differences be-
tween forms as well as confidence intervals for indi-
vidual linear distances. The influence of individual
landmarks is contained in the linear distance out-
put. Software for automated graphical output is un-
der development and will be available with the
WinEDMA software (°Theodore M. Cole III (Cole,
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2002); http://oshima.anthro.psu.edu/). Currently the
graphical method used to study the analytical out-
put is to draw lines of different colors, weights, or
patterns to depict the various magnitudes of differ-
ences for specific linear distances (e.g., Aldridge et al.,
2002; DeLeon et al., 2001) and the adoption of more
standard data displays (Cole and Richtsmeier, 1998).

It has also been noted that the information con-
tained within the form matrix is redundant, because
all chords between all possible landmarks can be
calculated if only a small number of chords are
known. In short, a form can be reconstructed from a
subset of the complete catalogue of linear distances,
so it seems that a reduction in linear distances
might streamline EDMA. But how does a researcher
make the choice of those linear distances to exclude?
The arbitrary choice of a subset of linear distances
could accentuate the influence of certain linear dis-
tances in the comparison of forms, while masking
the influence of others. The data do not provide any
indication of the subset of linear distances that
would be most informative in analysis. This issue is
discussed more thoroughly by Lele (1991).

In summary, our discussion of these major classes
of morphometric approaches is based on limitations
of what can be known about form and form differ-
ence, given landmark data. When there are infinite
choices for the orientation of the objects being com-
pared, the parameters of rotation and translation
are mathematically unknown and unknowable. The
information that can be known about a set of forms
represented by landmark data is limited. Superim-
position and deformation approaches provide per-
suasive graphical output, but each analysis repre-
sents only one of an infinite number of possible
interpolations of the difference between forms. No
amount of data can tell us which one of these inter-
polations is the “true” one. The lack of elaborate
graphical output makes EDMA seem less satisfying,
but the approach is purposefully limited to those
classes of information that can be known from land-
mark data, and does not include unverifiable as-
sumptions.

Analysis of data by various morphometric
methods (or, “one fish, two fish,
old fish, new fish”)

We provide here sample applications of some of
the landmark-based morphometric methods dis-
cussed above. These methods, representing super-
imposition, deformation, and linear distance-based
approaches, are applied to the same data sets, in an
attempt to demonstrate the relative merit of these
approaches. We begin by providing the rationale and
research design for this study. Next, we introduce
and briefly describe the analytical programs used.
Finally, we present the results of the various anal-
yses of the same data sets, and discuss the positive
and negative aspects of each approach.
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Fig. 9. This two-dimensional biological form, Gramma loreto,
was used as the basis for hypothetical data sets. Ten biologically
relevant landmarks were identified, and coordinate landmark
data were collected. They are: 1, mouth; 2, eye; 3, anterior dorsal
fin; 4, caudal dorsal fin; 5, operculum; 6, base of pectoral fin; 7,
free edge of pectoral fin; 8, anterior ventral fin; 9, caudal ventral
fin; and 10, tailfin.

Research design

Rationale. There are now many nontraditional
morphometric methods that can be used to quanti-
tatively describe the difference in form between two
objects or two samples of objects. A number of mor-
phometric studies provide analyses of data sets us-
ing more than one method, in an attempt to see
whether the methods provide consistent results
(e.g., Richtsmeier and Lele, 1990; Atchley et al.,
1992; Corruccini, 1987), or to take advantage of
what seem to be the best features of various ap-
proaches (e.g., Lague, 2002). But if different meth-
ods yield different results, how can we assess the
relative merits of each method? How do we know
which answer(s) is valid? In order to evaluate the
relative strengths and weaknesses of morphometric
methods, we need to apply them to a set of data
where specific differences in morphology are known
a priori.

Here we use the morphometric methods described
above to analyze an artificial data set based on a
biological form with 10 landmarks (Fig. 9). We mod-
ified this original form to create three artificial
forms representing samples that differ from the
original one in specific ways. Why do we use simu-
lated data to evaluate methods, while at the same
time stressing the importance of science when ap-
plying morphometric methods? Simulated data are
used in order to test whether the methods under
consideration provide valid estimates of the param-
eters and accurate descriptions of form difference.
Only when methods are shown to be valid and are
able to discern specific, defined modifications in
form, can the usefulness of the method for a partic-
ular biological problem be evaluated appropriately
(e.g., determining which method has the most sta-
tistical power or the most informative graphical dis-
plays). In our opinion, if the method does not pass
the first test (i.e., if the method cannot discern de-
fined modifications in form), then there is little rea-
son to determine whether the format in which these
answers are given is “useful,” “interpretable,” or “in-
formative.” Moreover, arguments about the power
and robustness of statistical tests developed for cer-

the fish Gramma loreto. Ten landmarks were chosen
on the original form (Form 1) to create a region of
high landmark density (Landmarks 1-3 and 5-7),
and a separate region of low landmark density
(Landmarks 4 and 8-10; Fig. 9). Form 2 was gener-
ated by altering Form 1 to represent localized
change in a region of high landmark density (Fig.
10). Form 3 was generated by altering Form 1 to
represent localized change in a region of low land-
mark density (Fig. 12). Form 4 was generated by
altering Form 1 to create a generalized, overall
change in morphology, including a slight increase in
size (Fig. 13). Three comparisons were made, Forms
2—4 being compared to the initial Form 1, using each
of the morphometric methods described below.

We have defined specific anatomical differences
between these forms, and refer to them as “true”
differences. We describe these differences in terms
of the displacement of specific landmarks in specific
directions. However, in most biological applications,
one form does not “morph” into another form; the
forms are simply different, and we aim to accurately
describe this difference. Consequently, the coordi-
nate system that is internal to one form has no true
relationship to the internal coordinate system of the
other form. But in adopting landmark data, we can
only describe the displacement of landmarks relative
to one another. From the relative displacements, we
can attempt to discern the underlying anatomical
differences. In this study, by using artificial data
sets, we define the anatomical differences first, and
can therefore specify the “true” landmark displace-
ments. We use various morphometric methods to
discern these displacements.

Generation of landmark data. Two-dimen-
sional coordinate landmark data were collected from
Form 1 and from Forms 2-4 using the program
Scion Image (©1998 Scion Corp.). Ten biologically
relevant landmarks were chosen (Fig. 9). The data
sets were organized and put into appropriate format
for each of the morphometric programs utilized.

Methods

Superimposition approaches. We used two meth-
ods of Procrustean superimposition in this study.
The first of these, a generalized least-squares algo-
rithm, calculates transformations and minimizes
the sum of the squared differences between corre-
sponding landmarks on the forms being superim-
posed (Boas, 1905; Chapman, 1990; Sneath, 1967).
The second method, a generalized resistant-fit algo-
rithm (Chapman, 1990; Rohlf and Slice, 1990; Siegel
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and Benson, 1982), uses repeated medians to calcu-
late the transformations, and attributes differences
to a small number of landmarks instead of spreading
the difference over the whole object as in the least-
squares approach. Both of the superimposition
methods utilized, least-squares and resistant-fit,
were applications of the RFTRA package of morpho-
metric software by Ralph Chapman (91989 Smith-
sonian Institution).

Deformation approaches. Finite-element scal-
ing analysis (FESA) and thin-plate splines (TPS)
were chosen to illustrate the use of two deformation-
based methods. FESA was performed using the
FIESCA (version 3.1) software (Morris, 1989; avail-
able for download at http://oshima.anthro.psu.edu).
We used two distinct finite-element designs to com-
pare the Reference and Target forms, in order to
illustrate the effect that the finite-element design
has on the results of FESA. In the first model, ele-
ments consisted of seven triangles and one quadri-
lateral, and each element represented a functional
region. In the second model, elements consisted of 10
triangles and represented alternative functional re-
gions. TPS was performed using Splus® software
(Splus, 2000). As discussed previously, a model for
the bending properties of the thin-plate spline must
be chosen. We adopted the minimum bending energy
model.

Linear distance-based approaches. EDMA form
comparisons were done using WinEDMA software
(©2001 T.M. Cole, III; available for download from
http://oshima.anthro.psu.edu). We used two metrics
in EDMA for comparing forms: relative differences
and arithmetic differences. EDMA (relative differ-
ences) (Lele and Richtsmeier, 2001) calculates mean
forms for each comparison and produces form differ-
ence matrices, each element of which is a ratio with
a linear distance of Form 1 in the numerator and the
same linear distance from the other form in the
denominator. Ratios are reported for every inter-
landmark distance.

EDMA (arithmetic differences) (Lele and Richts-
meier, 2001) also calculates mean forms for each
comparison. In contrast to EDMA (relative differ-
ences), however, it produces arithmetic difference
matrices, each element of which is the arithmetic
difference between a linear distance of Form 1 and
the homologous linear distance from the relevant
comparative form (e.g., Form 2). Differences are re-
ported for every interlandmark distance.

Results

For all comparisons made in this study, each
method produced output according to the convention
for that method and the available software. The
RFTRA package of morphometric software produced
a graphic output for both least-squares and resis-
tant-fit superimposition, with lines showing dis-
placement of each landmark in the Target form rel-
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ative to its original position in the Reference form.
FIESCA (FESA deformation) produced both nu-
meric (not reproduced here) and graphic output,
with ellipses at each node (landmark) showing the
degree of “compression” or “stretching” at that node.
Splus (TPS algorithm) produced a graphic output
consisting of a deformed grid and landmark loca-
tions representing the Target form. WinEDMA
(EDMA linear-distance matrices) produced a nu-
meric data output (not reproduced here) that was
manually transformed into a graphic display. In the
following examples, we illustrated the lines that
represent the more salient features of the differences
between forms (see Fig. 11 for illustration criteria).

Form 1 — Form 2 comparison. The actual form
change generated here was the caudal displacement
of the ventral operculum (Landmark 5) and the dor-
sal displacement of the pectoral fin base (Landmark
6). This represents a biologically plausible form dif-
ference that might be related to adaptive changes in
the pectoral girdle of the fish. The two fishes are
identical in form, except for the changes in the pec-
toral girdle evidenced by changes local to these two
landmarks.

The results of this comparison, the true changes,
and the graphic display of results from each method
are shown in Figure 10. The generalized least-
squares (GLS) and generalized resistant-fit (GRF)
superimposition algorithms both discerned the true
form change accurately. In this example, there is no
change at 8 of 10 landmarks, meaning that these 8
landmarks can be superimposed exactly. When the
changing landmarks are located in a region of high
landmark density and only two landmarks are dis-
placed, these superimposition methods produce a
graphic output that is very easy to interpret and
correctly displays the true form difference.

Both FESA models showed stretching at six nodes
(Landmarks 1- 3 and 5-7), although only two nodes
(Landmarks 5 and 6) were actually displaced. This
discrepancy results from the generalization of local
deformation to all nodes connected to the element
that contains Landmarks 5 and 6, whether or not
they have been displaced. The results of FESA
Model 1 correctly show a dorso-ventral stretching of
the element bordered by the operculum and the base
and free edge of the pectoral fin (Landmarks 5, 6,
and 7, respectively), and a dorso-ventral compres-
sion of the region between the cranial edge of the
dorsal fin (Landmark 3) and base of the pectoral fin
(Landmark 6). The combination of this information
might be correctly interpreted as the dorsal dis-
placement of the base of the pectoral fin, but there is
no unique interpretation for this result. Whatever
the interpretation, the magnitude of displacement of
the base of the pectoral fin obscures the caudal dis-
placement of the operculum (Landmark 5), which
shares an element edge with the base of the pectoral
fin.
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Fig.10. Comparison of Form 1 to Form 2 by deformation, superimposition, and linear distance-based methods. True change, shown
in upper left, involves dorsal displacement of pectoral fin base (Landmark 6) and caudal displacement of operculum (Landmark 5).
Reference form (Form 1) is shown in gray, with original landmark locations in blue, while target form (Form 2) is indicated in black,
with landmarks shown in red. For each method, we modified graphic output of the computer software by adding fish outline and color
for clarity. Arrows were added to superimposition outputs to clarify direction of landmark displacements. EDMA results are illustrated
manually, and in this case represent linear distances that are more than 5% different (for EDMA (relative differences)) or more than
2 mm different (for EDMA (arithmetic differences)). Red lines show those linear distances that are relatively larger in target form,
while blue lines indicate those distances that are relatively smaller in target form.

FESA Model 2 highlights dorso-ventral compres-
sion at the eye (Landmark 2) and dorso-ventral
stretching at the ventral operculum (Landmark 5).
These results indicate a dorsal displacement of one
or both of the landmarks at the mouth (Landmark 1)
and the pectoral fin base (Landmark 6). However,
this model was unable to localize the displacement
specifically to the pectoral fin base (Landmark 6).

TPS results correctly highlight the dorsal dis-
placement of the pectoral fin base (Landmark 6) and
indicate a caudal displacement of the operculum
(Landmark 5). The anterior portion of the grid is
also skewed slightly in an inferior and caudal orien-
tation, suggesting an inferior and caudal rotation of
the skull (Landmarks 1, 2, and 5), which is not seen
in the true form change.

EDMA (Relative Difference) results correctly sug-
gest that displacement occurs primarily at the

operculum (Landmark 5) and the pectoral fin base
(Landmark 6). These results demonstrate an impor-
tant detail in interpreting EDMA results. One must
note whether linear distances that are notably dif-
ferent between forms all share a common landmark
as an endpoint, because this situation indicates that
the landmark common to all these linear distances
has been displaced, while the other landmarks re-
main stable relative to one another. The quantita-
tive results of this analysis generally indicated that
Forms 1 and 2 are of the same size, as only linear
distances that were more than 5% different are
shown in Figure 10.

EDMA (Arithmetic Difference) results were simi-
lar to those from EDMA (Relative Difference). They
indicated the dorsal displacement of the pectoral fin
base (Landmark 6) and a caudal displacement of the
operculum (Landmark 5). The quantitative results
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tween Form 1 and Form 2. WinEDMA output provides an arith-
metic difference for every possible interlandmark linear distance.
Confidence intervals are available to denote distances that are
significantly different between forms, but when sample size pro-
hibits statistical testing, the researcher must arbitrarily choose a
threshold for extreme values to include in a graphic display of
differences in form. In this case, a threshold of 2-mm difference
between like linear distances was used. When choosing an appro-
priate threshold, the researcher may be guided by natural breaks
in the density distribution.

of the EDMA (Arithmetic Difference) analysis also
indicated that Forms 1 and 2 were generally of the
same size, as only linear distances that were more
than 2 mm different are shown in Figure 10. This
provides a good example of the manual interpreta-
tion currently required for graphic display of EDMA
output. WinEDMA produces a matrix of differences
for every single interlandmark linear distance, and
the researcher must choose a threshold for purposes
of illustration. Usually, the threshold selected rep-
resents a natural break in the data (Fig. 11).

Form 1 — Form 3 comparison. The actual form
change generated here was a cranio-dorsal displace-
ment of both the caudal edge of the dorsal fin (Land-
mark 4) and the tailfin (Landmark 10). Landmarks
4 and 10 are related to the positioning of the dorsal
caudal vertebrae. A form difference of this sort
might be found where the only developmental incon-
sistency among forms is an alteration in these cau-
dal vertebrae. The results of this comparison for each
of the methods utilized are presented in Figure 12.
GLS superimposition did not accurately show the
form changes occurring in the tail region. The su-
perimposition methods used here include a step in
which each specimen is scaled, in an attempt to
standardize by size and identify differences in form
that are not simply due to differences in scale. Con-
sequently, the results are intended to be interpreted
as differences in shape. In this comparison, shape
changes in the tail were distributed across four of
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the caudal landmarks. While this result indicates
that the “shape” of the ventral fin relative to the
other landmarks has changed, an interpretation of
these results describing actual changes local to land-
marks in the ventral fin would be inaccurate.

In contrast, GRF superimposition displayed the
landmark displacements accurately. This particular
type of form change, where a small subset of land-
marks is displaced and the remainder of the form
remains unchanged, is the type of change most suited
for GRF analysis. The problem is that we rarely know
beforehand that this is the “type” of form change that
has occurred, and therefore do not have the necessary
information to make this choice intelligently.

FESA Model 1 results correctly showed stretching
in the most caudal element along a dorso-caudal to
ventro-cranial axis, and compression on a more
cranio-caudal axis. A similar pattern is seen in the
next most caudal element (bounded by the cranial
and caudal points on the ventral fin and the caudal
edge of the dorsal fin; Landmarks 8, 9, and 4, respec-
tively). However, it is impossible to determine which
of the landmarks are actually displaced from the
FESA results, as the deformation local to Land-
marks 4 and 10 is generalized to the whole element
and to a landmark in an adjoining element (Land-
mark 8). FESA Model 2 shows a similar effect at the
caudal point on the ventral fin (Landmark 9), where
there was no change, with less pronounced effects at
the other nodes. These results correctly suggest the
anterior displacement of the tailfin (Landmark 10).
In contrast, the deformation apparent at the caudal
ventral fin (Landmark 9) would likely be interpreted
as ventro-caudal displacement, although this land-
mark did not move in the true form change.

TPS correctly indicates the difference in shape as
consisting primarily of a cranial and slightly dorsal
displacement of the caudal dorsal fin and the tailfin
(Landmarks 4 and 10, respectively). However, these
results also suggest an inferior displacement of the
caudal ventral fin (Landmark 9); an expansion be-
tween the cranial and caudal edges of the ventral fin
(Landmarks 8 and 9) is also suggested. As with the
superimposition methods, these results indicate
shape differences, and must be interpreted and de-
scribed as differences in shape rather than form.
Descriptions of actual differences in ventral fin mor-
phology would be incorrect in this case.

Results of both EDMA analyses correctly indicate
that the caudal edge of the dorsal fin and the tailfin
are displaced anteriorly. This example again under-
scores the need to look for linear distances that
share a common landmark as an endpoint to enable
valid interpretation of results. Every linear distance
shown has as an endpoint on either the caudal dor-
sal fin or the tailfin (Landmarks 4 and 10, respec-
tively), indicating that those landmarks have been
displaced. Careless interpretation of these results
might identify an overall shortening of the specimen
on an cranio-caudal axis. Consideration of the quan-
titative results of these analyses again indicates
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Fig.12. Comparison of Form 1 to Form 3 by deformation, superimposition, and linear distance-based methods. True change, shown
in upper left, primarily involves cranial displacement of posterior dorsal fin and tailfin (Landmarks 4 and 10, respectively). Reference
form (Form 1) is shown in gray, with original landmark locations in blue, while target form (Form 3) is indicated in black, with
landmarks shown in red. For each method, we modified graphic output of computer software by adding fish outline and color for clarity.
Arrows were added to superimposition outputs, to make clear the direction of landmark displacements. EDMA results represent linear
distances that are more than 5% different (for EDMA (relative differences)) or more than 3 mm different (for EDMA (arithmetic
differences)). Red lines show those linear distances that are relatively larger in target form, while blue lines indicate those distances

that are relatively smaller in target form.

that most interlandmark linear distances remain
unchanged between Form 1 and Form 3. Only those
linear distances that were more than 5% different
(for EDMA (Relative Differences)) or more than 3
mm different (for EDMA (Arithmetic Differences))
are shown in Figure 12.

Form 1 — Form 4 comparison. The true form
change generated here a priori was a generalized,
overall expansion of most landmarks away from the
center, including in particular the ventral displace-
ment of the cranial point on the ventral fin (Land-
mark 8) and caudal displacement of the caudal point
on the dorsal fin (Landmark 4) and tailfin (Land-
mark 10). This difference in form might arise from a
general increase in size, accompanied by related,
positively allometric increases in pectoral fin ray
length, rib length, and caudal vertebrae depth.

We note here again that in most biological appli-
cations, landmark displacement can only be de-
scribed relative to the other landmarks. If Form 1
and Form 4 lay side-by-side on the counter at the
fish market, could we say whether landmarks 4 and
10 were caudally displaced in Form 4, or whether all
the other landmarks were anteriorly displaced?
Probably not, because based on the landmark data,
we can only describe relative displacement. But for
our hypothetical forms, we create discrete morpho-
logical changes while holding the rest of the form
constant. Therefore, we know and can therefore de-
scribe absolute displacement of specific landmarks
in specific directions. In this case, we designed the
experiment so that the caudal vertebrae are deeper
in Form 4, and Landmarks 4 and 10 are caudally
displaced.
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The results of this comparison using the various
morphometric methods are shown in Figure 13. GLS
and GRF superimposition algorithms produced sim-
ilar results. Both superimposition methods gave es-
timates of the true displacement of cranially located
landmarks in the area of high landmark density
that were in agreement with the true change. How-
ever, they both underestimated the caudal displace-
ment of the tailfin and caudal dorsal fin (Landmarks
10 and 4, respectively), and showed a cranial dis-
placement of the caudal edge of the ventral fin
(Landmark 9) when the true displacement of this
landmark was caudal and ventral. These results are
affected by the scaling factor employed by these
methods to “shrink” Form 4 to fit Form 1, and the
apparent differences must be interpreted as changes
in shape.

FESA results suggest that most of the deforma-
tion between Forms 1 and 4 occurred in the tail
region, which is accurate. In FESA Model 1, the
ellipses indicated that principal stretching in the
tail region was on a dorso-caudal to ventro-cranial
axis. In contrast, FESA Model 2 shows little defor-
mation local to the caudal dorsal fin (Landmark 4),
which could be interpreted as indicating little or no
change at that landmark. It also shows exaggerated
compression local to the caudal ventral fin (Land-
mark 9). This may be due to the ventral and caudal
displacement of the other two nodes of that element
in Model 2 (Landmarks 8 and 10). Similarly, note
the different orientations of the ellipses in Models 1
and 2 at the free edge of the pectoral fin (Landmark
7). The deformation reflected in the ellipse at any
node is computed and displayed as a composite effect
from all bordering elements. These examples dem-
onstrate the impact of element design on FESA
results.

TPS results correctly indicate an overall increase
in size from Form 1 to Form 2, and suggest a cranio-
caudal stretching. Anterior displacements of the
mouth (Landmark 1) and particularly the opercu-
lum (Landmark 5) are indicated. The caudal dorsal
fin and the tailfin (Landmarks 4 and 10, respec-
tively) are displaced caudally, the cranial edge of the
ventral fin (Landmark 8) is displaced inferiorly, and
the grid suggests compression between the cranial
and caudal ventral fin (Landmarks 8 and 9, respec-
tively). These results also correctly show an increase
in the size of the triangle bounded by the operculum
and the pectoral fin (Landmarks 5-7).

EDMA (Relative Differences) results correctly in-
dicate that Form 4 was generally larger than Form
1, because most interlandmark distance ratios for
this comparison are less than one (i.e., most linear
distances were smaller in Form 1 than in Form 4).
Ratios that are much less than one are shown in
Figure 13 (indicating linear distances that are over
5% larger in Form 4). Other linear distances had
ratios closer to one, indicating that there was not as
much difference in those linear distances. On careful
inspection of these results, a number of patterns are
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discernible. First, the caudal dorsal fin and the
tailfin (Landmarks 4 and 10, respectively) remain
equidistant, and yet together move caudally (rela-
tive to the other landmarks). Other predominant
points of change include the ventro-caudal displace-
ment of the free edge of the pectoral fin (Landmark
7) and the ventro-caudal displacement of the cranial
edge of the ventral fin (Landmark 8).

The EDMA (Arithmetic Differences) analysis also
demonstrated that Form 4 was generally larger than
Form 1, because almost all linear distances were
larger in Form 4. Only those linear distances that
showed more than a 7-mm difference between Form
1 and Form 4 are shown in Figure 10. These results
highlight the separation of the caudal dorsal fin, the
tailfin, and the anterior ventral fin (Landmarks 4,
10, and 8, respectively) from more anterior land-
marks (Landmarks 1-3 and 5). By looking at the
pattern of differences between these landmarks and
those around them in the quantitative results of the
analysis, one may clarify the specifics of displace-
ment. For example, there is little change (less than
1.5 mm) in the linear distances that define the tri-
angle bounded by Landmarks 1, 2, and 5, indicating
that the skull is being displaced as a unit (i.e., rela-
tions within the skull remain the same, but move
anteriorly relative to the rest of the body).

Synopsis

When forms are different, all the methods pre-
sented here show that some difference exists, but to
aid biological inquiry, methods should correctly lo-
calize and characterize these differences. GLS and
GRF superimposition applications both produced
clear, unambiguous graphic outputs automatically.
They appear easy to interpret, but the results are
shown in terms of absolute landmark displace-
ments, and the researcher must limit interpretation
to relative landmark displacement. In addition, re-
sults are affected by the choice of superimposition
algorithm (GLS or GRF).

FESA is a deformation method and requires no
predetermined rule of superimposition. However, as
shown, deformation local to each landmark is influ-
enced by measures of differences local to landmarks
that are part of the same element or that are joined
by a side shared between elements. In addition,
changes in the finite-element model used can affect
the results produced. TPS applications produce
graphic output in the form of a deformation grid,
which is pleasing to the eye and reminiscent of
D’Arcy Thompson’s deformation grids. However,
like many of the other methods discussed here, TPS
requires the researcher to make a priori assump-
tions about deformational changes, in our example
by adopting the minimum bending energy rule.

Finally, EDMA provides a method of analysis that
requires no a priori assumptions. The results of
EDMA analysis are presented as matrices and sim-
ple graphs (although additional graphic programs
are currently in progress). These results are not as
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Fig.13. Comparison of Form 1 to Form 4 by deformation, superimposition, and linear distance-based methods. True change, shown
in upper left, involved generalized increase in size due to change at all landmarks. Reference form (Form 1) is shown in gray, with
original landmark locations in blue, while target form (Form 4) is indicated in black, with landmarks shown in red. For each method,
we modified graphic output of computer software by adding fish outline and color for clarity. Arrows were added to superimposition
outputs to make clear the direction of landmark displacements. Linear distances shown in lightly weighted red lines indicate measures
that were 5-10% larger in target form (for EDMA (relative differences)) or more than 7 mm larger in the target form (for EDMA
(arithmetic differences)). Heavily weighted red lines indicate linear distances that are more than 10% larger in the target form. Since
no linear distances were smaller in target form by more than 2% (for EDMA (relative differences)) or by 2 mm (for EDMA (arithmetic
differences)), dashed blue lines are used to indicate distances that are similar in Forms 1 and 4. Similarities between forms are often
as important as differences when attempting to understand processes at work.

clear as the graphic output of the superimposition
methods or TPS, but they have the advantage of
incontrovertibly conveying valid representations of
change in form as characterized by landmark data.

Unless the local differences between forms are
correctly characterized, morphometric methods offer
little of use to biologists. Since knowledge of the
biology of organisms can tie precise anatomical lo-
cations to information concerning developmental,
evolutionary, and biomechanical processes, localiza-
tion of form difference is critical. Though essential,
the valid definition of local differences between
forms is only the beginning. The design of additional
experiments is required to provide an explanation of
the biological basis of the results of any valid mor-
phometric analysis. Morphometric methods can only

define the difference between forms; they cannot
explain these differences.

SUMMARY AND CONCLUSIONS

“The theme must be accurate and fruitful; it must not be twisted
to encompass more than it can explain; it must not claim exclu-
sive rights as a unifying approach.” (Gould, 1966, p. 588.)

If we lived in a perfect world, there would be a
single morphometric method for comparing forms
using landmark data. That method would be able to
localize differences using valid, uniformly most pow-
erful statistical tests based on statistical models
whose estimates are unbiased, consistent, and effi-
cient, with great graphical abilities. Alas, we do not
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live in a perfect world. Only certain aspects of these
desired features are obtainable from methods cur-
rently available for studying form difference using
landmark data.

Biology is messy, and biological forms are charac-
terized by changeable degrees of variability. To at-
tempt to understand the biological processes re-
sponsible for the variation we see in phenotypes,
quantification is necessary. Landmark data have
become a reliable, verifiable, and accepted means of
recording and comparing two- and three-dimen-
sional forms. However, these data are limited in
several ways. For example, when landmark data are
collected, no verifiable information regarding the
surfaces that lie between the landmarks is retriev-
able from analysis of the data. The problems in-
volved in quantification of biological form and
change in form are complicated, and we need to
realize that the data we collect to represent biolog-
ical forms are limited.

In order to solve the problems associated with the
proper study of form change, explicit and precise
definitions of any terms that enter into the day-to-
day vocabulary of a science are required. We have
shown that no unique definitions exist for the terms
size and shape, and so as currently used, the terms
can be ambiguous. When forms differ greatly in size,
they are commonly scaled to adjust for these differ-
ences so that the information relating to scale does
not obscure other information intrinsic to the com-
parison. When forms are scaled, it is often said that
shapes, rather than forms, are being compared. It
has been argued that Procrustes methods were de-
veloped for comparison of shapes, while EDMA was
developed to study differences in form, and accord-
ingly the results of these two methods cannot be
compared. Given what is known about size, shape,
and nuisance parameters, is this point valid? We
have defined the concept of orbit and established
that the comparison of forms requires the compari-
son of orbits. Scaling adjusts the size of the form, but
it does not change a “form” into a “shape.” Scaling
simply changes the units used to express the form.
In terms of orbits, adjusting for differences in scale
changes the characterization (extent) of the orbit,
but it does not specify the location of any object
within the orbit. Consequently, what we found for
form comparison pertains equally to shape compar-
ison: we can only reliably compare orbits. The prob-
lem of nonidentifiability and the related issues that
were raised in the context of superimposition and
deformation methods apply equally, whether one is
comparing forms or shapes (scaled forms).

Nuisance parameters, as defined by Neyman and
Scott (1948), affect our ability to make inferential
statements about the form difference discovered by
the application of morphometric methods. The na-
ture of landmark data requires the specification of a
coordinate system during data collection. We have
shown that each form has its own unique but un-
knowable orientation with relation to the mean form
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and with relation to any other form or sample of
forms. A coordinate system is required for collection
of landmark data. Any coordinate system will suf-
fice, however, and further statistical analysis should
be invariant to this arbitrary choice. Since the rela-
tive orientation of forms is unknowable, our analysis
should not depend on an arbitrary choice of
orientation.

Deformation approaches provide different infer-
ences based on the choice of the deformation func-
tion. Similarly, the inferences provided by superim-
position methods change if the minimization criteria
are modified. Unfortunately, even an infinite sample
of landmark data cannot determine which deforma-
tion function or which superimposition scheme is
valid. There is a way to avoid these choices, and that
is simply to adopt one of the many methods that do
not require these choices. These include EDMA, old-
fashioned multivariate morphometrics, and other
related methods. The results obtained do not provide
enticing graphics, because arbitrary choices are re-
quired to provide graphical displays of the type pro-
vided by deformation and superimposition ap-
proaches. The linear distance-based methods utilize
landmark data without specifying a coordinate sys-
tem, and base their inferences only on the informa-
tion that can be obtained from the data.

Although null hypothesis testing has become a
hallmark of biological research, alternate statistical
approaches are being proposed, and the field of bi-
ology should make use of these methods. For mor-
phometric analyses, in addition to null hypothesis
testing, we should be thinking in terms of how much
form difference (effect size) and where the differ-
ences are (localization), and provide confidence in-
tervals for that information. Only those hypotheses
that can be distinguished on the basis of information
available from landmark data should be considered.

The concept of morphometric spaces has caused
some confusion for users. The critical issue to under-
stand about the various spaces is the importance of
choosing a metric that is appropriate to the space.
This can be a difficult task for the uninitiated, and if
you need guidance, get it; the literature holds exam-
ples of even the experienced falling into this trap. It
is important to remember that most forms that we
study actually exist in old-fashioned, three-dimen-
sional Euclidean space, though there are relatively
flat organisms (e.g., many plants, flatfishes, and flat-
worms) or parts of organisms (e.g., fly wings) that
can be adequately described using two-dimensional
data. Approaching problems in three dimensions is
straightforward in EDMA and finite-element scaling
analysis, but is a bit more complicated in the other
approaches.

The goal of this paper was to discuss the current
state of morphometrics. Our conclusion is that we
have a long way to go before the promise of morpho-
metrics is fulfilled. We focused our argument on
what can be known about form and form difference,
given landmark data. Discussions of statistical
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power in current morphometric approaches are fu-
tile if the methods being discussed do not provide
correct and verifiable answers. Biologists need to be
mindful of the assumptions of their chosen method,
and morphometricians must consider the fundamen-
tal purpose of studying biological form and form
change when proposing new methods. The nature of
morphological diversity, the production of diversity
through development, and its evolution over time
hold the great questions of modern biology. To be of
any use in deciphering the major trends in morpho-
logical diversity, morphometrics must offer models
and methods that enable precise definition of the
parameters that bear directly on the production and
nature of this diversity. Morphometric methods are
simply tools to help define the difference between
forms. The results of a valid morphometric analysis
are not the answer, but should be used to design
further studies that probe the processes working to
produce the differences revealed.
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APPENDIX: TERMS AND CONCEPTS

Bias of an estimator: Bias is measured as the average difference between an estimator and the true value
of the parameter that it tries to estimate, for finite samples. If this difference is nonzero, the estimator is
biased.

Consistency of an estimator: An estimator is considered to be consistent if the estimator converges to the
true value of the parameter as the sample size increases. Estimators that do not converge to the true value
as the sample size increases are inconsistent estimators of the given parameter. It seems natural that as
sample size increases, the estimation of certain population quantities should improve, becoming more and
more representative of the true value. When this is not the case, it is due to inconsistency of the estimators.
Consistency is generally considered an essential property of any estimator. Also, an estimator cannot be
efficient if it is inconsistent.

Effect size and confidence intervals: In most practical situations, simple testing for the presence of an
effect is not enough. An estimator of the magnitude of the effect (effect size) and the uncertainty associated
with that estimator is necessary. Confidence intervals provide this information. This is one of the reasons
why most statisticians prefer reporting confidence intervals for the difference in means, rather than simply
testing whether or not the difference in the means is zero (Agresti, 1989).

Efficiency of an estimator: An estimator is considered efficient if it has the smallest (asymptotic) variance
among all consistent estimators.

Euclidean space: For our purposes (but not technically), Euclidean space is ordinary two- or three-
dimensional space and their higher-order analogues.

Maximum likelihood: This is the value of the parameter that makes the observed data most likely (for
details, see Casella and Berger, 1990).

Method: A method is any technique used in estimating the parameters of a model (see below) and in
further analysis such as hypothesis testing, pattern recognition, or calculation of confidence intervals.

Method of moments: This is the value of the parameter that equates the sample moments to the
population moments (for details, see Casella and Berger, 1990).

Model: A model, as used in this paper, is a mathematical construct that attempts to characterize certain
aspects of the underlying phenomena (e.g., dimensions, dynamics, properties, or interactions). This math-
ematical construct includes quantities called parameters that are estimated for each sample under consid-
eration.

Nonconvergence: By nonconvergence in this instance, we mean that the optimization algorithm of specific
computer routines is unable to find the maximum.

Non-Euclidean space: Spaces that are not Euclidean. For example, a space defined by the surface of a
sphere is a non-Euclidean space.

Power of a statistical test: The power of a statistical test corresponds to the probability of rejecting a null
hypothesis when it is false. A uniformly most powerful (UMP) test is a test that has most power among all
valid tests.

Shape: According to the Oxford English Dictionary (compact edition, 1971), shape is “external form or
contour; that quality of material object (or geometrical figure) which depends on constant relations of
position and proportionate distance among all the points composing its outline or its external surface.”
Shape of a form and the definition of shape can change when a different size measure is used to standardize
the forms under study.

Size: According to the Oxford English Dictionary (compact edition, 1971), size is “the magnitude, bulk,
bigness, or dimensions of anything.” Different surrogates can be chosen as measures for size. This choice
affects the comparison of size of forms, and the operational definition of shape as the latter definition is
dependent on the chosen surrogate for size.

Validity of a statistical test: A statistical test is considered valid provided the true probability of type
I error (the probability of rejecting a hypothesis when it is true) is equal to the specified probability of
the type I error. Tests must be valid before one can compare their powers. For example, the usual
two-sample ¢-test that assumes equal variances in the two populations is invalid if the population
variances are not equal. It would make little sense to compare powers of two statistical approaches if
one of them is invalid.



