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Abstract. The use of geometric techniques and concepts in combination with multi-
variate statistical techniques for the analysis of variation has been a major advance for
the statistical analysis of shape during the last decade. Fundamental to the formalism
of what has become known as geometric morphometrics, we find a Riemannian shape
manifold with a particular metric called Procrustes distance. This metric measures
shape differences in configurations of reference points, represented by sets of rectangular
coordinates. The use of Procrustes distances in substitution to regular sums of squares
in general linear models is a established procedure of the morphometric toolkit. In this
paper, we review the geometric formalism and propose the application of Procrustes dis-
tances as replacement for parameters in quantitative genetic models for the assessment
of evolutionary processes influencing biological shape changes. A biological case study
is examined, where conflicting hypotheses of natural selection and genetic drift could be
held responsible for an observed difference in body shape and size of fish populations in
different environments of a coastal lagoon. The geometric methods in combination with
the evolutionary models allow for a deep analysis of the problem and indicate natural
selection as the probable cause for the observed shape difference.

Keywords: Procrustes distances, shape spaces, evolutionary rates, natural selection, linear
models.

1 Introduction

The study of biological shape variation and its causes has been a topic of interest for several
centuries [1]. For a long time, two methodological schools have provided tools for the analysis and
quantification of shape differences between organisms. The most widely used were the methods
derived from the biometrical school of genetic analysis, which were based on extracting factors
from the covariance structure of collections of distance measurements between two reference
points (called landmarks) in biological structures [2]. Such techniques allowed for the study of
variation within and between defined groups, but failed to provide a geometrical interpretation
of shape differences [1]. On the other hand, a second school based on the tradition of the works
of D’Arcy Thompson [3] used techniques for the study of shape changes that preserved the
geometric relations among reference points in biological structures, but failed to provide variables
that allowed for the study of variation [1]. The solution to this problem was reached after the
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so called morphometric synthesis, which was the combination of techniques that preserved the
geometry of a biological structure’s shape, and allowed for the analysis of variation [2].

One of the important developments were precise definitions of “morphometric”, “shape” and
“size”. Morphometrics is defined by Bookstein [2] as the study of covariances of shape and causal
factors. Therefore, the objects of morphometric study are not the biological shapes alone, but their
variation, causes and consequences. In this context, shape is defined as the geometric properties of
an object, that are invariant to rotation, translation and scaling [4]. Indeed the shape space used
can be viewed as a set of equivalence classes [Z] = {ZΓ / Γ ∈ O(k)}; where Z = Y/||Y ||, ||Y ||2 =
trace(Y.Y T ) and Y is the matrix obtained from the original data configuration X = (xij)p×k in
the following way: its i-th line Yi is of the form Yi = Xi − X̄, being X̄ the centroid of the p-gone
determined by the points Xi ∈ Rk (the lines of the matrix X). In such way that the elements
of [Z] have centroids at the origin, are normalized and are identified through an element Γ of
the group O(k) of orthogonal transformations in Rk (linear transformations preserving angles).
Therefore in the shape space we have represented the original data sets X passing over location,
scaling and orientation. Size is defined as any positive real valued function g(X) of a configuration
of landmarks that satisfies g(aX) = ag(X) [4]. After the incorporation of geometric concepts,
the field of morphometrics has experienced an enormous theoretical development during the last
decade [4, 5, 6, 7], Leading to the most statistically powerful methods currently available [8, 9, 10].

The metric subjacent to geometric morphometric methods is a chord distance in a Riemannian
space called Procrustes distance. Because it is defined as a sum of squares, it can replace regular
univariate sums of squares in general linear models such as regression [11], analysis of variance
[12, 13], and can be used for the estimation of important biological parameters such as the
heritability of shape [14]. The substitution of regular sums of squares by Procrustes distances
reduces the measure of shape variation of multidimensional objects to a scalar and allows for
the direct quantification and interpretation of biological processes that cause shape variation
without the need of techniques for extracting the latent structure from covariance matrices. Some
important linear models have not yet incorporated Procrustes distances as a measure of shape
differences. One such example is the calculation of evolutionary rates for shape. Although there
are well established methods for the calculation of evolutionary rates [15] and rate tests used
for discriminating among possible evolutionary processes influencing univariate characters [16],
the calculation of evolutionary rates for multidimensional features, such as shape, is yet to be
examined in detail, and the methods so far proposed are based on covariance or correlation
matrices calculated from sets of “size” measures, a feature that cannot be separated from shape
in such non-geometric data sets [2]. Because the rate tests for natural selection [16] are based
on among population mean squares, the Procrustes distances can be readily implemented on the
formulas to assess the evolutionary process most likely to be responsible for the observed shape
divergence. Our aim in this study is to review the geometric formalism and biological models and
problems to which the Procrustes metric can be applied, proposing the incorporation of geometric
estimates of shape divergence into evolutionary rate tests for natural selection.

2 Geometric formalism

From the geometrical point of view, each landmark can be considered as a point Xi = (xi1, ..., xik) ∈
Rk in the k-dimensional Euclidean space Rk ( usually, k = 2 or k = 3; the case k ≥ 4 is of inter-



est in multivariate statistics, where the shapes of multivariate data sets carry information about
normality, linearity and correlation between variables).

A set of p landmarks {X1, ..., Xp} determine a p × k-matrix X = (xij)p×k whose i-th line is
given by the coordinates of the point Xi, 1 ≤ i ≤ p. In order to study the shape of the original
configurations X, we have to construct certain topological spaces.

2.1 Pre-shapes and the shape space Σp
k

We begin with the set of the original data set configurations X = (xij)p×k, where each configu-
ration X is viewed as a real matrix with p lines and k columns. Formally, this space Mp×k is
characterized by

X ∈Mp×k ⇐⇒ X = (xij)p×k =




x11 · · · x1k
...

. . .
...

xp1 · · · xpk


 .

For each i = 1, ..., p the i-th line can be identified with the point Xi = (xi1, ..., xik) ∈ Rk. Also,
for each j = 1, ..., k we denote Xj = (x1j...xpj)

T the j-th column of X, which can be identified as
a point in Rp.

The second space E2, called the preform space, is obtained after the standardization of location
of the configurations X in such way that their centroids C(X) are translated to the origin. The
centroid is defined as the geometric center

C(X) = (x̄1, ..., x̄k) :=
1

p

p∑
i=1

Xi

of the p-gone in Rk determined by the points X1, ..., Xp ∈ Rk, where

x̄j =
1

p

p∑
i=1

xij.

This space E2 can be defined in the following form

E2 := {X ∈Mp×k / C(X) = 0}.

The dimension of the preform space E2 is pk − k.
A third space E3, the so called form space, is obtained after the standardization of location

and orientation of the configurations X, i.e., through the identification of two elements Y and Ỹ
of the preform space when one of them is applied into the other using an adequate orthogonal
transformation Γ ∈ O(k).

In order to define this manifold E3, we consider the linear group O(k) of the orthogonal linear
transformations of the Euclidean space Rk, acting on E2 throughout the mapping

Φ : O(k)× E2 → E2

defined by
(Γ, Y ) 7→ Φ(Γ, Y ) := Y.Γ.



Then we define E3 as being the quotient space E2

O(k)
whose elements are the O(k)-fibres determined

for the action Φ. More precisely,

E3 := {[Y ] / Y ∈ E2};
where

[Y ] := {Y.Γ / Γ ∈ O(k)}.
We have that the dimension of this manifold E3 is pk−k−(

k
2

)
. [Recall that O(k) is a submanifold

of Mk×k of dimension
(

k
2

)
= k(k − 1)/2.]

The pre-shape space E4 can be viewed as the submanifold obtained as being the inverse
image f−1(1) of the regular value 1 of the function

f : E2 → R, Y 7→ f(Y ) = ||Y ||2 =

p∑
i=1

||Xi − C(X)||2. (1)

This space E4 has dimension pk − k − 1. Each element Y of the preform space determines the
pre-shape

Y/||Y || ∈ E4.

The shape space Σp
k is the quotient space obtained from the pre-shape space, identifying

two elements of E4 which differ by a rotation. This means that each element of this shape space
is the equivalence class

[Z] := {Z.ΓT / Γ ∈ O(k)};
where Z is an element of the pre-shape space.

It follows that
dim(Σp

k) = pk − k − 1− k(k − 1)/2. (2)

2.2 The Procrustes Distances

It is of interest in Morphology to have a measure of shape similarity between objects. For this
we present the following Procrustes Distances on the above spaces.

In the following, we consider two configurations X1, X2 ∈ Mp×k and its representing Zi,
i = 1, 2. in the pre-shape space E4.

The Full Procrustes Distance between two configuration matrices X1, X2 ∈Mp×k is given by

dF (X1, X2) := min{||Z2 − tZ1Γ|| /t > 0, Γ ∈ O(k)}. (3)

The Partial Procrustes Distance dP (X1, X2) between two configuration matrices X1, X2 ∈
Mp×k is obtained by matching their pre-shapes Z1, Z2 as closely as possible over rotations but
not scale. More precisely

dP (X1, X2) := min{||Z2 − Z1Γ|| /Γ ∈ O(k)}. (4)

The Procrustes Distance ρ(X1, X2) between two configuration matrices X1, X2 ∈ Mp×k is
the length of the closest arc of great circle (spherical geodesic) between the Z1 and Z2 on the
pre-shape sphere, i.e.,

ρ(X1, X2) := 2 arcsin[
1

2
dF (X1, X2)]. (5)



It is a fact that ρ is a metric in the manifold Σp
k. This shape space Σp

k, provided with the
Procrustes Distance ρ, is a Riemannian manifold. This pair (Σp

k, ρ) is the so called Kendall
manifold, which is denoted simply as Σp

k.
These three distances are related in the following way

dF (X1, X2) = sin ρ, dP (X1, X2) = 2 sin
ρ

2
. (6)

2.3 Smallest distance between configurations

Two configurations X1 and X2 (in figure space) can be compared by similarity when they are in
pre-shape space. So, we can rotate efficiently the second configuration by placing the respective
points as nearly as possible to the first one.

Let Z1 and Z2 be the respective pre-shape configurations of X1 and X2. We must obtain the
minimizing rotation Γ of Z1 using partial Procrustes distance as

d2
P (X1, X2) = min{trace[(Z2 − Z1.Γ)T (Z2 − Z1.Γ)]}

= min{||Z2||2 + ||Z1.Γ||2 − 2 max{trace(ZT
2 .Z1.Γ)}}

= min{||Z2||2 + ||Z1||2 − 2 max{trace
(
ZT

2 .Z1.Γ
)}},

where ||Z2|| = ||Z1|| = 1 because Z1 and Z2 are elements of pre-shape space, and ||Z1.Γ|| = ||Z1||
because the size of Z1 is preserved after rotation.

The rotation of Z1 using the minimizing rotation Γ, considered as the best rotation, permit us
to have the Procrustes distance that give us a parameter of comparison between configurations X1

and X2. We implemented the best rotation operation in C++ programming language to compute
the Procrustes distance.

2.3.1 The best rotation

We wish to find the best rotation matrix Γ that maximize trace(ZT
2 .Z1.Γ). This problem we could

solve as R = V SUT , where V and U are square orthonormal matrices computed by the singular
values decomposition method [17] as UΣV T = ZT

2 Z1. The matrix S is the identity transformed
from Σ preserving the respective sign of diagonal elements, see [4]. Another form best elegant to
find the best rotation is by using quaternions [18].

The rotation matrix Γ is expressed by a vector q = (s,v) called quaternions representation
[19, 20], where s is a scalar related to the angle of rotation and v is the axis, vector, of rotation.
Let Z1k be the k-th line of matrix Z1 (similar case Z2k for Z2). Then, the vector Z1k must be
expressed as Z̃1k = (0, Z1k) to rotate with quaternion q. The rotation of Z̃1k is given by

(0, Z1k.Γ) = q.Z̃1k.q
−1, ||q|| = 1. (7)

With this, trace(ZT
2 .Z1.Γ) is expressed as

trace(ZT
2 .Z1.Γ) = trace((Z1.Γ)T .Z2)

=

p∑

k=1

(q.(0, Z1k).q
−1)T .(0, Z2k)



=

p∑

k=1

(q.Z̃1k)
T .(Z̃2k.q)

=

p∑

k=1

qT .(ZT
1k.Z2k).q)

= qT .

p∑

k=1

(ZT
1k.Z2k).q

= qT .N.q,

where ZT
1k is the expand orthogonal 4× 4 matrix of Z̃1k such that

q.Z̃1k =




0 −x1k −y1k −z1k

x1k 0 z1k −y1k

y1k −z1k 0 x1k

z1k y1k −x1k 0


 .q = Z1k.q

and

Z̃2k.q =




0 −x2k −y2k −z2k

x2k 0 −z2k y2k

y2k z2k 0 −x2k

z2k −y2k x2k 0


 .q = Z2k.q,

considering Z̃rk = (0, xrk, yrk, yrk), for r = 1, 2.
The problem of maximizing qT .N.q with ||q|| = 1 has solution when q is the unit eigenvector

corresponding to the greater eigenvalue of matrix N [18], that is easily computed.

3 Evolutionary rate tests

The tests of evolutionary rates and evolutionary divergence are based on the assumption that,
under neutral evolution (genetic drift) models, continuous phenotypic characters have an expected
mean at generation t that is approximated by a normal distribution. The parameters of this
distribution depend on the choice of a particular model [16]. There are two models available:
the constant-heritability of Lande [21, 22] and the mutation-drift equilibrium of Turelli et al.
[23]. Under the constant-heritability (CH) model, the expectation for the mean of a continuous
character z at a time t is

z̄(t) ∼ N

[
z̄(0),

σ2h2t

Ne

]
, (8)

where z̄(0) is the mean of character z when t = 0, σ2 is the variance of the character, h2 is the
heritability of the character, and Ne is the effective population size. In this model, deviation
from the mean at t = 0 should increase for larger variances, heritabilities and the number of
generations passed, but should decrease for large effective population sizes (as expected in models
of genetic drift). Whenever the observed deviation from the initial mean is larger than expected
by the neutral model, we can infer that a process of directional selection is taking place. When the
observed deviation is smaller than expected, we infer a process of stabilizing selection maintaining
the similarity among generations. If the observed deviation is within the expected interval, we



accept the null hypothesis of neutral evolutionary processes. The test statistics for evolutionary
rates follow an F-distribution with n − 1 degrees of freedom in the numerator (n is the number
of lineages studied at once) and infinite degrees of freedom in the denominator. The statistic for
the test of directional selection in the constant-heritability model is

F =
z2

σ2h2t/Ne

, (9)

where z = z̄(t) − z̄(0), the difference between mean values at generations t and 0. If there is no
information regarding the ancestral mean, we can also compare populations descended from the
same ancestor. In this case, the evolutionary rate test can be transformed into a divergence rate
test as

F =
S2

z̄(t)

σ2h2t/Ne

, (10)

where the difference between generations is substituted by an among population mean square

S2
z̄(t) =

∑
[z̄i(t)− ¯̄z(t)]2

(n− 1)
, (11)

where the term ¯̄z(t) corresponds to the grand average over all populations.
The mutation-drift equilibrium (MDE) model expects the value of the continuous character

under neutral evolution to approximate

z̄(t) ∼ Nbz̄(0), 2tσ2
me, (12)

where σ2
m is the mutational variance, the rate by which new variation is added to the continuous

character by mutation. Accordingly, the test statistic for directional selection in divergence rates
for the MDE model will be

F =
S2

z̄(t)

2tσ2
m

, (13)

The tests statistics for stabilizing selection are obtained by the inversion of (9), (10) and (13).
Because of the inversion the new degrees of freedom in the numerator are infinite and in the
denominator are equal to n− 1.

The Procrustes distances have successfully replaced sums of squares in general linear models
of multivariate regression [11, 24], analysis of variance for testing group differences [12], for testing
fluctuating asymmetry [13], and quantitative genetics [14]. To address questions related to the
evolution of multidimensional shape using the models for evolutionary rates, we can replace (11)
by

S2
z̄ =

∑
d2

p(Z̄i,
¯̄Z)

(n− 1)(dimΣp
k)

, (14)

where the numerator corresponds to the sum of squared partial Procrustes distances between Z̄i(t)
(the mean shape of population i) and ¯̄Z(t) (the grand average calculated from n populations).
The inclusion of the term dimΣp

k in the denominator represents the dimensionality of shape space,
as defined in (2).



The choice of which model to use depends on the effective population size (Ne) and the number
of generations (t) passed between ancestors and descendants or the number of generations as
separate populations for divergence rate tests. The CH model is designed for populations recently
separated which have not yet achieved mutation-drift equilibrium. It is appropriate if t < Ne/5.
For populations in equilibrium, one should use the MDE, which will be appropriate if t > 4Ne

[23]. In general, one should use the CH model for populations recently separated and the MDE
model for populations or species separated for a long time (see Spicer [16] for a discussion).

The estimation of test parameters may be problematic, particularly those related to quanti-
tative genetics (heritatibilities, mutational variances, effective population sizes, generation times
and number of generations passed). A large number of parameter estimates for various characters
and organisms can be found in the literature [16]. Usually, reasonable and conservative esti-
mates should be preferred [26], but because of the uncertainty related to parameter estimation,
these tests should not be considered rigorous quantitative tests, but qualitative indications of
evolutionary processes [23].

4 Application to a biological problem: evolutionary processes driving body shape
divergence between fish populations from a coastal lagoon

The plains at northern Rio de Janeiro State were formed by sediment deposition from the Paráıba
do Sul River during the Holocene [27]. The process of sediment deposition formed a large number
of lagoons with various environmental conditions. Among the most recent (2000 years or less) are
the coastal lagoons formed by closure (a sand bar by river bound sediment) of fluvial channels
connecting the Paráıba do Sul River and the sea [28].One such lagoon is the Iquipari lagoon,
which is narrow but very long (about 10 km). Because of its nature, the Iquipari lagoon presents
an environmental gradient along its longest axis (from the ocean inwards). The environmental
gradient [29] is observable in water salinity, nutrients, fauna (freshwater species are not found
in the sand bar region), and flora. A large bank of submerged macrophytes and macroalgae is
observable in the sand bar region (the margin is clear of plants), whereas the interior of the lagoon
is dominated by macrophytes, particularly Typha dominguensis, that grow on marginal shallow
waters. This environmental gradient creates contrasting situations where animal populations
inhabiting the same lagoon may experience different environments regarding water chemistry
(with physiological implications), structural complexity (favoring different types of locomotion),
and predation regimes. The livebearing fish Poecilia vivipara is widespread on the lagoons of
northern Rio de Janeiro. Its high tolerance to environmental changes, particularly salinity and
temperature [30], makes it one of the few species abundant in all lagoon environments of the region.
Because in poeciliine fishes, females have lower mobility than males [31, 32], they experiment little
environmental variation during their lifetime, and thus, are expected to be adapted by natural
selection to the particular environmental conditions of the region they inhabit.

Body shape evolution in fish is mostly driven by locomotion needs, relating to the structure
of the environment [33, 34]. Fish that swim in open areas for longer periods of time have slender
bodies, which provide less thrust or acceleration, but are more efficient in long range, high speed
swimming [34]. Fish that live in structurally complex environments (such as a coral reef or dense
banks of macrophytes) benefit from higher, laterally compressed bodies, which provide more
thrust and more manoeuvrability [34]. Given the nature of environmental differences observed



within coastal lagoons in northern Rio de Janeiro, we can expect that populations inhabiting
different environments (even within the same lagoon) will present body shape differences.

In order to test this hypothesis, we conducted a study where we collected Poecilia vivipara
specimens from two different sites in Iquipari lagoon: one population from the sand bar region
and one population from the interior of the lagoon. From each site, 60 females were collected
fixed and stored in 10% formalin. The specimens were photographed by a high resolution digital
camera and the coordinates of 12 landmarks (Figure 1) were registered for each, using the program
TpsDig [36].

Figure 1: Landmarks used in this study: 1- snout tip; 2- articulation of lower jaw; 3- center
of eye; 4- anterodorsal extremity of opercle; 5- ventral conjunction of opercula; 6- posterodorsal
extremity of opercle; 7- dorsal insertion of pectoral fin; 8- anterior insertion of ventral fin; 9-
anterior insertion of anal fin; 10- anterior insertion of dorsal fin; 11- ventral insertion of caudal
fin; 12- dorsal insertion of caudal fin.

The landmark configurations were superimposed by the generalized Procrustes analysis de-
scribed above, and the visualization of resulting aligned configurations in figure space indicate a
difference between mean shapes in the two populations (Figure 2).

Figure 2: Superimposed landmark configurations in figure space for specimens colected in the
sand bar and interior of Iquipari lagoon.

The next step is to determine whether the observed mean shape differences are statistically
significant. This test can be performed by calculation of an F-test derived by Goodall [12] which
uses the sum of squared Procrustes distances between group means and an overall mean as
an among groups sums of squares, and the sum of squared Procrustes distances between each
individual and its group mean as a within-group sums of squares. After division by appropriate



degrees of freedom, the ratio of the among group and within-group mean squares is distributed
as an F-statistic with pk − k − k(k − 1) degrees of freedom in the numerator and pk − k − k(k −
1)

∑a
i=1(ni − 1) degrees of freedom in the denominator, where p = number of landmarks, k =

number of dimensions (2 for planar figures, 3 for three-dimensional objects) and ni is the sample
size for group i, which is summed over a groups. For the particular case of testing the significance
of shape difference between Poecilia vivipara populations in the Iquipari lagoon, the F-test was
significant (F = 20.0739, df1 = 20, df2 = 2360 : P < 0.00001).

After determining that there is a significant shape difference between the two populations,
the next step would be to use one of the evolutionary models explicited above to assess whether
the amount of shape difference can be explained by the neutral model of evolution. In deciding
which model should be used, we refer to the quantities referred by Turelli et al. [23]. If t < Ne/5,
we should use the constant-heritability model, if t > 4Ne, we should use the mutation-drift
equilibrium model. In our case, the easiest quantity to determine is t, the number of generations
since divergence. A conservative estimate of time first has to consider that the populations were
established at the same time as the formation of the lagoon. From geological dating results, we
can infer that the lagoon of Iquipari is under 2000 years of age, for it is very close to the ocean
[27]. We conservatively set the time of separation of the populations to 2000 years and translate
it to number of generations using an estimate of 2 generations/year [35]. As a result we can set a
maximum limit to 4000 generations passed since divergence. The next step would be to calculate
the effective population size(Ne), which can be estimated from total population size (N), for the
smallest Ne/N ratios are around 0.5 [16]. From density estimates of number of fishes by marginal
area, we can conservatively estimate the population size in the Iquipari lagoon to be around 300000
specimens (but it is probably larger). Considering the Ne/N ratio to be 0.5, we can calculate Ne

to be 150000. Because 4000 < (150000/5), we should use the constant heritability model for the
test of directional selection. The remaining parameters of the model that have to be estimated
are: between group shape difference (S2

z̄(t)), shape variance (σ2) and shape heritability (h2). The

estimate of between-group shape difference using Procrustes distances in (14) is 0.00002739033.
The within-group variance calculated using Procrustes distances is 0.00008166949. Heritability
estimates are more difficult to obtain directly, for they represent the proportion of total variance
that is caused by additive effects of genes (as opposed to dominance, epistasis and environmental
variance) [25]. Heritability estimates for morphological characters in fish species vary from 0.14
to 0.80, where even the lowest values are statistically significant [37, 38, 39, 40, 41].

The F-value in 10 can be thought of as a function and the uncertainty of parameter estimation
can be dealt with by considering sensible intervals over which the parameters may vary to check
which particular combinations of parameters may lead to acceptance or rejection of the neutral
model. Using this method, it is possible to deal with uncertainty in at least two parameters and
we can visualize the effect of varying parameters as a surface, where the parameters are designated
to X and Y axes, and the F-statistic is the Z axis (Figure 3).

Using the constant-heritability model from 10, but substituting the estimates of between
group and within group variances by sums of Procrustes distances, we can test for directional
selection over a defined interval of uncertain parameters. In our case, uncertainty is most present
in estimates of heritability and effective population size, therefore. Considering that the one-tailed
F-value (because we are testing only for directional selection) on the statistical table, for 20 and
infinite degrees of freedom, and alpha 0.01 is 1.88, we can assess which region of the parameter



space would lead to acceptance of the null hypothesis (which combinations produce Fs smaller
than 1.88). In Figure 3, we see that it takes a maximum effective population size of 25000 for
the null model of genetic drift to be responsible for the observed magnitude of morphometric
differentiation. Based on rough, but conservative approximations, we can estimate the effective
population size in the lagoon to be much larger than that (probably larger than 150000). If we
are to consider the estimated population size as true, any heritability value different of zero (the
existence of significant heritability is one of the conditions for natural selection to operate) will
lead to rejection of the null hypothesis.

Figure 3: Contour plot of the F-surface for heritability and effective population size.

The analysis of size differences presented similar results to the shape analysis. In geometric
studies of shape such as the one we performed, size is measured by the square root of summed
squared differences between each landmark and the mean landmark, also called centroid. This
size measure is called centroid size [2]. Because size is inherently univariate, it can be treated
by standard methods (equations 10 and (11) can be used directly). The surface obtained for the
test of directional selection on size (not shown) is remarkably similar to that obtained for shape.
Hendry and Kinnison [15] review evolutionary rates in microevolutionary studies. These authors
identify two measures of evolution with different implications and interpretations: darwins and
haldanes. Evolutionary rates measured in darwins, d = (ln z1 − ln z2)/t, are simply the mean
difference in natural logarithms between two populations divided by the time of separation in
millions of years. The rates in haldanes, h = [(z1/sp) − (z2/sp)]/g , are mean differences stan-
dardized by pooled within group standard deviations (sp) divided by the number of generations
since divergence. The biological and statistical differences between the two measures of evolution
are discussed in depth by Hendry and Kinnison [15]. Although the body shape differences in
Procrustes distances do not fit directly in the formulas for evolutionary rates, the evolution in
body size can be measured by them. In our study the observed evolutionary rates for body size
divergence were 110 darwins and 0.000397 haldanes. These values allow for direct comparison
with evolutionary rates published for other species and characters.



5 Discussion

Our results have shown that the use of Procrustes distances in substitution to regular sums of
squares can be valuable and highly informative for the understanding of evolutionary processes
influencing shape variation in biological structures. The use of Procrustes distances in general
linear models has been suggested for regression [11], analysis of variance [12, 13], and quantitative
genetics [14]. The present study is, however, the first proposal to the use of Procrustes distances
as a measure of differentiation in the calculation of rate tests for natural selection. In addition,
the simple method of calculating a F-surface for dealing with uncertainty in estimated parameters
had never been used before, and should be very useful when the parameters cannot be accurately
estimated, but sensible and conservative intervals of variation can be ascertained.

The combination of geometric methods with evolutionary models was highly informative
regarding possible processes influencing shape variation of body shape in the populations of
Poecilia vivipara. Given that the estimates of uncertain parameters were very conservative, we
can indicate natural selection as a probable process responsible for the observed shape differences
in populations inhabiting different environments. The magnitude of the observed shape difference
was too large for genetic drift to explain the observed pattern. If the effective population size was
smaller than 25000 individuals, we would also accept the null model of genetic drift. However,
that population size is much lower than the conservative estimates we provided and the null model
should be rejected.

Although the Procrustes distances do not apply directly to existing evolutionary rates (dar-
wins or haldanes) for the comparative assessment of relative speeds of evolutionary modifications,
it is possible to devise an evolutionary rate based on Procrustes distances, which would lead
to the comparison of rates between different structures or species. One of the major concerns
regarding the comparison of evolutionary rates is the scale where each rate is measured [15]. Di-
viding the Procrustes distance between two mean shapes (two different populations or the same
population in different generations) by the appropriate degrees of freedom (the dimensionality of
shape space), and dividing that by the number of generations, we would obtain a measure of the
rate of change in shape space per generation that could be compared with estimates of the same
rate for shapes in different structures or different populations or species.

The difference observed in body size was also remarkably high, and the resulting patterns
and processes inferred were the same as those for the analysis of body shape. Because size is
a univariate character, its evolutionary rates could be compared with that for other species and
characters. The evolutionary rate observed falls within the interval of evolutionary rates observed
in different studies regarding other Poeciliine species, such as Poecilia reticulara and Gambusia
affinis, even though the number of generations in our study was considerably larger than those
reported in the literature [15].

The field of morphological evolution has benefited greatly from the introduction of geometric
methods in the analysis of shape variation, particularly because the characteristic spatial localiza-
tion of factors generated by geometric morphometric analyses are readily intepreted by models for
the development and evolution of complex morphological structures [42]. The use of Procrustes
distances for the calculation of evolutionary rates and rate tests is an important methodological
advance that should improve our understanding of the processes causing the diversity of shapes
observed in the natural world.
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1997.
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