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ABSTRACT 

The various types of mathematical spaces used in morphometrics arc reviewed with 
emphasis given to the distinctions between the physical space of the organism, shape space 
and tangent spaces. The effects of linear transformations of the coordinates of the landmarks 
(on the specimens or the reference) on various statistical analyses and estimates of the 
uniform and nonaffine components of shape variation are presented. It is shown why 
statistical analyses of the estimates of the nonaffine components of shape variation are 
sensitive to affine transformations of the reference or the specimens (which may seem 
counterintuitive). Some implications of these results on the choices of methods for the study 
of shape are discussed. 

INTRODUCTION 

There has been considerable interest in recent years in geometrically based methods 
for the statistical study of shape variation. A short overview ofthe new field is given by Rohlf 
and Marcus (1993) and Rohlf (199Oa). A comprehensive overview is given in the text by 
Bookstein ( 199 I ). Rohlf and Bookstein ( 1990) and Marcus et al. ( 1993) are proceedings of 
morphometrics workshops. In order to apply these new methods properly it is ncccssary that 
one understand some of the theory behind the methods. This paper discusses some aspects 
that are often misunderstood. 

There has also been important theoretical work on various mathematical spaces that 
are useful for studying the statistics of shape change (e.g., Goodall, 199 1). These spaces start 
with the assumption that information on shape has been captured by recording the coordi- 
nates of the positions of landmarks on an organism. The coordinates are two or three 

/ dimensional corresponding to the physical space in which the coordinates of the organism’s 
landmarks were recorded. Although coordinate data contain some information not relevant 
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to the study of shape (e.g., location and orientation of the specimen), such data also contain 
information sufficient to allow the computation of any possible mathematical index that 
might be proposed to describe the positions of the landmarks relative to one another. Thus 
working with coordinates is not a limitation. There has also been important work on the 
statistical distributions of points in these spaces (e.g., Kent; 1991, Goodall, 1992a). 

Several different approaches are being used in biology to study shape. One of the 
purposes of the present note is to summarize some of the most important terms used in shape 
statistics in an accessible form to clarify some of the interrelationships among morphometric 
methods. It is not the intention of this paper to review all of the approaches currently being 
used (see Rohlf, 1990a, or Rohlf and Marcus, 1993, for more general reviews). 

A major purpose of this paper is to point out some of the statistical consequences of 
different choices of reference configurations and linear transformations of the coordinates 
of the landmarks of the reference or the original organisms. In order to do this, it is necessary 
to review briefly some important equations used in the computations for each method. 
Knowing what manipulations of the data do or do not affect the results helps one interpret 
the results of a statistical method. 

The notation used by other authors was adjusted in order to avoid duplication of 
symbols (especially the symbols cx and W) within this paper and to be compatible with the 
notation used in Rohlf (1993a). The letter “t” when used as a superscript to a matrix indicates 
matrix transposition. 

MORPHOMETRIC SPACES 

Goodall (1991) presents a set of definitions for the various multidimensional spaces 
that are used in morphometrics. In all of these spaces the ith object (an individual specimen) 
consists of k coordinates in the physical space of the organism (x,y or x,y,z for two or three 
dimensions, respectively) at each of p landmarks, corresponding to the ith point in a 
multidimensional space. Although only some of these spaces will be used in most practical 
morphometric studies, an understanding of relationships between them and of their geomet- 
ric properties is needed for understanding the new morphometric methods. 

The original coordinates of the landmarks of an object (arbitrarily positioned in the 
digitizing plane or volume) characterize a figure space. This is a space of pk dimensions 
because the location of each of the p landmarks is described by k coordinates in the 
k-dimensional physical space of the organism. 

If the n objects are translated in the plane or volume so that their centroids are 
superimposed, then the coordinates of a centered object corresponds to point in a preform 
space. This space is ofpk-k dimensions because the k coordinates of the centroid have been 
fixed for each object. 

If the objects are translated and rotated (but not reflected or scaled) so that they 
superimpose optimally according to some criterion, then the resulting coordinates charac- 
terize a form space ofpk-k-k(k-1)/2 dimensions. In two dimensions, one angle of rotation 
is fixed, and in three dimensions three angles are fixed. Note that Lele (1993) allows 
reflections in his definition of form space and gives a different number of dimensions (see 
below). 

On the other hand, if one translates the objects to the origin and scales the objects to 
unit centroid size (the square root of the sum of squared distances of all landmarks to the 
centroid of the object, Bookstein, 1991) but does not perform any rotations or reflections, 
the resulting coordinates characterize what is called a preshape space of&k-l dimensions. 
Preshapes that differ only by rotation are said to belong to the same fiber (the closed path of 
preshapes defined by all possible rotations of the object in the figure space). 
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Finally, if the objects are centered on the origin, scaled to unit centroid size and 
optimally rotated (but not reflected) so as to minimize the sum of the squared distances 
between homologous landmarks of a pair of objects (the square of the Procrustes distance 
between them), then an object corresponds to a point in Kendall’s (1984, 1986) shape space. 
This space is of pk-k-k(k-1)/2-l dimensions and is denoted by the symbol Cf (for p 
landmarks on a k-dimensional object). Each point in shape space corresponds to a fiber in 
preshape space. Shape space is non-Euclidean because Procrustes distance is used as the 
measure of distance between points in this space. The Procrustes distance between two 
shapes is the minimum distance between any two preshapes on the fibers to which the two 
shapes belong. 

For three points in the plane, shape space, C: can be visualized as the surface of a 
sphere. Kendall (1986) gives an illustration and refers to it as a “spherical blackboard.” 
Procrustes distances correspond to chord distances in this space. Some workers (e.g., 
Kendall, 1984) prefer to work with geodesic distances along great circles on the surface of 
the sphere. It is easy to convert back and forth between these two kinds of distances without 
any loss of information. In general, for-p landmarks in the plane, shape space is the complex 
(p-2)-torus constructed from the Cartesian product of spheres with radius 112. The mathe- 
matical properties of this shape space are surprisingly complex given that it is generated as 
a consequence of pursuing the simple idea of using Procrustes distance between pairs of 
shapes. Shape spaces for k = 3 dimensions are “substantially more complicated” (Goodall, 
1992b). 

An alternative approach to the study of shape is to approximate the non-Euclidean 
shape space by a tangent space that has a Euclidean geometry. This space is made up of the 
projections of the objects in shape space onto a linear vector space that is tangent to shape 
space. The two spaces intersect at a point corresponding to the reference object, which can 
be an estimated mean (consensus) configuration from a Procrustes analysis. For three 
landmarks and two dimensions the tangent space is an ordinary plane that touches the surface 
of a sphere, corresponding to shape space, at the point which corresponds to the reference. 

The shape variation captured in the linear tangent space is not limited to just linear 
changes in shape (uniform shape change, see below), as all shape variation is embedded in 
the tangent space. There is no loss of information as in a projection into a lower dimensional 
space. Every point in shape space corresponds to a point in the tangent space (and vice versa). 
For objects close to the reference, the Euclidean distances between pairs of objects in the 
tangent space will be good approximations to geodesic distances between points in shape 
space. Statistical analyses based on variation in the tangent space are expected to reflect 
accurately variation in shape space for only “small” variation in shape around the reference 
object. Bookstein (199 1) gives some guidelines ofwhat constitutes “small”variation in shape 
for triangles of landmarks. One can conjecture that when there are more than just a few 
landmarks, the usual magnitude of biological variation in shape should till only a relatively 
small region of shape space and thus standard multivariate statistical analyses (such as 
described by Marcus, 1990, or Krzanowski, 1988) in the tangent space should be satisfactory. 

THE THIN-PLATE SPLINE 

Bookstein’s (1989) use of thin-plate splines corresponds to one method for visualiz- 
ing a tangent space for the statistical analysis of shape variation. The thin-plate spline 
function is a smooth function (it is twice differentiable) that maps all points in the physical 
space of the reference onto corresponding points in the space of the ith specimen. For 
completeness, basic aspects will be reviewed here. Bookstein (1991) gives a general 
description of thin-plate splines. The TPSPLINE program (Rohlf, 1990b) performs the 
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necessary computations and plots the differences between two configurations of landmarks 
as a transformation grid based on the thin-plate spline. 

For two dimensions the thin-plate spline function can be written as 

where x and v are the coordinates of any point in the space of the reference, X’ and JJ are the 
resultant coordinates of a point in the space of the ith specimen, A is a kx(k+l ) matrix of 

parameters that specify an affine transformation (translation, rotation, scale and shear), U(r,j 
is the function tf In $, ‘; is the distance between a point (x,.~) in the space of the reference 
and theJth landmark in the reference, and the n, are k-dimensional vectors of parameters that 
determine the nonaffne deformation of the space. For three dimensions the function U(r;) 
is defined to be simply r,. Points corresponding to the landmarks in the reference are mapped 
exactly to the locations ofthe homologous landmarks in the ith specimen. Intermediate points 
in other locations within the physical space of the reference are mapped to some mathemati- 
cally homologous location within the physical space of the ith specimen. Because the only 
information used to compute a thin-plate spline is the locations of the landmarks and because 
this function is based on the physical properties of a thin sheet of metal rather than of 
biological structures, one should not take the implied homologies of intermediate points too 
seriously. The details of the transformation grids are very suggestive, but they are just a way 
of expressing the relative displacements of the landmarks. One of the most importanl 
properties is that the thin-plate spline function leads to convenient orthogonal vectors which 
span the tangent space and thus allows one to visualize all possible differences in shape that 
affect the positions of the landmarks. It is also very convenient that these vectors correspond 
to smooth functions. Thus any statistical analysis that expresses its results in terms oftincar 
combinations of variables can be illustrated as a deformation in the style of a Thompson 

( 19 17) transformation grid. 
The k(k+l)+kp parameters needed to transform the coordinates of the landmarks in 

the reference into those of the ith specimen can be computed as follows: 

Ai = Xi Lq’ 

Ni = Xi LD” 

where Xi is the kxp matrix of coordinates of the ith specimen; L,’ is the upper left pxp block 
of the inverse of the L matrix (as defined in Bookstein, 1989, and Rohlf, 1993a) and is called 
the bending energy matrix; Li’ is the upper right px(k+ 1) block of the inverse of L; and 
N, is a kxp matrix whose columns correspond to the n, vectors in equation ( I ). Note that, for 
a fixed reference, the parameters, A,and N,, are simply linear combinations ofthe coordinates 
of the ith specimen. 

The different parameters correspond to differences between the reference and a given 
object at different geometric scales. The first k(k+l) parameters, the elements of matrix A,, 
describe the differences in terms of an affine transformation. This includes translation, scale, 
rotation and shearing. The effects of an affine transformation are of infinite scale since the 
effects of these changes cannot be localized to any particular region of an organism. Only 
shearing is a component of shape. It corresponds to a uniform stretching or compression and 
possibly reflection, of an object in a particular direction. Bookstein ( 199 1) refers to this as 
the uniform shape component. A shear can be specified in several ways. One of the easiest 
to visualize is in terms of principal strains-a set of orthogonal directions along which the 
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object is uniformly stretched or compressed by some factor. For two-dimensional data, there 
is a direction of maximum stretching and a direction of minimum stretching at right angles 
to it. The ratio of the factors by which the object is stretched in these two directions is a 
dimensionless quantity called anisotropy. See Bookstein ( 199 1) for a more detailed discus- 
sion with examples. For three-dimensional data, a shearing of the space can be described as 
stretching or compression along a set of three orthogonal directions. 

The kp nonaffine parameters, N,, describe the differences between an object and the 
reference as the sum of nonlinear deformations of an object. These correspond to local 
regions of expansion, compression, bending, and so on. The subspace defined by these 
parameters is actually of rank kpk-k2 because translation, rotation, scaling and shearing 
have been fixed. This subspace can in turn be decomposed into p-k-l k-dimensional 
geometrically orthogonal components (called partial warps, Bookstein, 1989, see below) 
corresponding to deformations along the x, _v (and possibly z) coordinate axes at different 
geometric scales. Small-scale variation corresponds to changes in the relative positions of 
landmarks that are close together in the reference. Large-scale (but not infinite-scale) 
variation correspond to classic, evenly graded growth gradients. 

The principal warps (Bookstein, 1989) are a set of eigenvectors that span the tangent 
space defined by the nonaffine components of the thin-plate spline. They are computed from 
the following decomposition of the bending energy matrix: 

LP’ = EAE’ , 

where E is a pxp matrix of eigenvectors and A is a diagonal matrix of eigenvalues (called 
bending energies, but it is better to interpret these simply as inverse measures of scale). The 
last k+l eigenvalues are equal to 0 because their corresponding eigenvectors span the part 
of the tangent space pertaining to affine variation (which is of infinite scale). The principal 
warps correspond to the first p-k-l column vectors of E. The vectors are orthogonal because 
they are the eigenvectors of a real symmetric matrix. 

One can express the thin-plate splint parameters of each specimen in terms of these 
principal warps rather than in terms of the original coordinates of its landmarks as in equation 
(2). This yields what are called partial warps (Bookstein, 1989). These are the principal 
warps applied separately along each coordinate axis and scaled appropriately so as to 
correspond to the nonaffine part of the thin-plate spline function that transforms the 
coordinates of the reference, X,., into those of a particular specimen, X,. The inner product 
of each row of Vi = Xi - X, with the pk-I columns of E that correspond to eigenvalues 
greater than 0 yield what Rohlf( 1993a) calls partial warp scores. They express the nonaffine 
shape differences between the reference and the ith specimen in terms of a new set of 
variables. They are computed as follows: 

(4) 

where the division by & and the subtraction of X, arc for convenience in describing the 
variation in shape with a sample of II specimens; the multiplication by A-‘l’* allows the 
possibility (depending on the value of a, see below) of different forms of weighting the 
principal warps according to geometric scale. Note that it is sometimes useful to retain all 
the columns in matrix E so that all variation captured by X, is prcscrvcd in the W, matrix. 
The additional columns of W, are not partial warps because they describe affne differences 
not local deformations. Sometimes other information, such as an estimate of the uniform 
shape component, is appended to the matrix of partial warp scores. 
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The W, matrix for the ith specimen has k rows and either p or pk-I columns 
depending on whether the last k+ 1 columns of E (the principal warps with eigenvalues equal 
to 0) are retained or not. If they are not retained then this equation can be simplified to 

W, = L X,EA 
-a/2 

G (5) 

because X,.E = 0 for the first p-k-l columns of E (the principal warps were constructed to 
be orthogonal to the reference configuration). Although Wi is a linear function of X,, it 
specifies the nonlinear deformations needed to transform the physical space of the reference 
so that the locations of its landmarks are as in specimen i. 

ESTIMATION OF THE UNIFORM COMPONENT OF SHAPE 
VARIATION 

There are a number of methods to estimate the uniform component of shape variation. 
Bookstein and Sampson (1990) and Bookstein ( 199 1) proposed two closely related methods 
for estimating the uniform component of shape change between a given specimen and 
reference specimen for two-dimensional data. Both methods use the following equation to 
compute the vector of parameters: 

u = (M’ S-’ iW-’ M’ S ‘AV , (6) 

where 

M, = “?i ’ % 0 . . V2k 0 
0 v23 0 v24 . . . 0 V?k I 

is a matrix of the y-coordinates of the shape coordinates (Bookstein, 1986) of landmarks 3 
. . . p in the reference (assuming a baseline defined by landmarks 1 and 2). The vector AV 
contains the differences in x and J> shape coordinates between the given specimen and the 
reference (strung out as a single column with 2k-4 rows). The two methods differ in the 
estimation of the (2k-4)x(2k-4) variance-covariance matrix S. For the method that mini- 
mizes Procrustes distance, S is the expected covariance among landmarks based on their 
geometrical position in the reference and assuming only circular digitizing noise with the 
same variance at each landmark. For their method that minimizes Mahalanobis distance, S 
is estimated from the observed variation in a sample of specimens. These methods are 
implemented in Bookstein’s computer program PROJECT (distributed with Rohlf and 
Bookstein, 1990). 

Rohlf ( 1993a) estimates the uniform shape component based on the affine parameters 
of the thin-plate spline. This has the advantage of extending the mathematically elegant 
decomposition of nonafflne differences in shape described in the previous section to include 
a decomposition of the affine differences into uniform shape change versus nonshape 
differences (translation, rotation and scale). Unfortunately, as pointed out by Bookstein 
(“Combining” article, this volume), the thin-plate spline computations weight differences 
inversely as a function of distances between landmarks in the reference. This means, for 
example, that shape differences involving a pair of landmarks that are very close together in 
the reference will be weighted very heavily compared with shape differences involving larger 
regions on the reference. This weighting seems inappropriate for estimating uniform shape 
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differences (or the other affne components), for which larger scale differences should have 
the higher weight. The problem can be seen by the counterintuitive superimpositions one 
sometimes obtains using the “minimum energy superimposition” display option in the 
TPSRW program (Rohlf, 1992) on data in which some landmarks are very close together in 
the reference. 

It is also possible to estimate the uniform component of shape variation as the 
“nuisance parameters” of affne superimposition methods. These superimposition techniques 
are described by Rohlf and Slice (1990a) and by Slice (“Three dimensional” article, this 
volume). In the least-squares approach (Generalized Aftine Least Squares, GALS, superim- 
position) one estimates translation, rotation, scale and the uniform shape components so as 
to minimize the residual differences between two specimens (or between a specimen and an 
average consensus configuration of landmarks). 

Bookstein (“Standard formula” article, this volume) proposes a linearized Procrustes 
method to estimate the uniform shape change component. He derives it to be equivalent to 
that obtained from GALS by Rohlf and Slice (1990a). For simplicity in notation, it is 
convenient to translate the reference (Generalized Least Squares, GLS, consensus configu- 
ration) to the origin, scale it to unit centroid size and then rotate it to its principal axes. Then 
in two dimensions C xy = 0, C x2 + C _$ = 1 and C x = C y = 0, where x and y are the x and 
y-coordinates of the reference after the centering, scaling and rotation operations described 
above are performed. Next use orthogonal least-squares Procrustes analysis (Sneath, 1967, 
Rohlf and Slice, 1990a, Goodall, 1991) to superimpose the ith specimen on the rotated 
reference and let AX and A_y denote the differences between the new coordinates of the 
specimen and those of the rotated reference. 

The uniform shape component for the ith object is then estimated as 

u2 = C y,A yi /G (7) 

where h, = C x: and h, = C y$. 

In two dimensions we can use U, and u1 as uniform shape descriptors for statistical 
analyses. For a fixed reference, U, and r+ are linear combinations of Ax’s and Ay’s. They will 
approximately follow a bivariate normal distribution if the deviations of the specimens from 
the reference are normally distributed landmark by landmark. The geometric meaning of U, 
and u2 can be visualized by using the following equation. It describes the effect of a uniform 
shape transformation on the coordinates of landmarks in the reference. 

[::I=[: 1 :‘$I (8) 

where x and y are, as above, the centered, scaled and rotated coordinates of the reference and 
x’ and y’ are the coordinates of the reference after the shearing operation defined by the 
parameters U, and uZ is applied. 

RELATIVE WARPS ANALYSIS 

In order to study variation in shape of a sample of n specimens, it is convenient to 
collect the W, (partial warp scores, equation (4 above) into a single matrix W. This new 
matrix has n rows corresponding to the n specimens and columns corresponding to the partial 

F. James Rohlf
I now prefer the use of Bookstein's equation on p. 161.
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warp scores for each specimen strung out as a single row (e. L’., all of the x projections 
followed by the v projections and, possibly, the z-projections). 
columns (or more if additional columns are appended). This can 
equation (4) to 

There will be k(p-k-l) 
be done by extension of 

(9) 

where the symbol 0 denotes a direct (Kronecker) product of two matrices, I, is the kxk 
identity matrix, and V is an nxkp matrix of the differences between each object and the 
reference strung out along each row (all of the differences in x-coordinates followed by those 
for they-coordinates and, possibly, the z-coordinates). The A and E matrices and the scalar 
CI are as defined in equation (4). 

Relative warps analysis (Bookstein, 1989, 199 1, Rohlf, 1993a) is a principal compo- 
nents analysis (PCA) ofvariation in shape in the tangent space as described by the W matrix. 
If cI # 0 then it is a weighted PCA with the weights a function of the geometric scale of each 
component of shape variation. If rx = 0 then relative warp analysis is consistent with the 
Procrustes metric for measuring the amount of difference between different shapes. Even 
though the principal warps are geometrically orthogonal, projections of a sample of speci- 
mens onto the principal warps are usually correlated. The purpose of a PCA is to describe 
the major trends of shape variation in as few statistically orthogonal dimensions as possible. 

The principal component vectors of the W matrix are called relative warps. They 
are often expressed in terms of displacements of landmarks. They can also be visualized as 
a transformation grid showing deformations of the physical space of the reference configu- 
ration; this is done by expressing each relative warp as a thin-plate spline (examples are given 
in Rohlf, 1993a, and Rohlf and Marcus, 1993). 

EFFECTS OF DIFFERENT CHOICES OF A REFERENCE 

Different choices of a reference result in different physical distances between the 
landmarks in the reference. This leads to different E and V matrices and thus to different W 
matrices. However, if CI is set equal to 0 in equation (9), as suggested by Rohlf ( 19933) for 
exploratory studies, then it is possible to retain all p principal warps in matrix E. The E 
matrix will be an orthonormal matrix and different choices of a reference will result in E 
matrices that differ only by a rigid rotation. Thus any analyses of the distance relationships 
between objects (e.g., cluster analyses orprincipal coordinates analyses ofdistancc matrices) 
based on the resulting W matrices will differ only as a result of the effect of subtracting off 
a different reference in computing the V matrix. Otherwise, the results will be identical 
because distances are invariant under rigid rotations. 

If, as is usually the case, only the first p-k-f principal warps are used (those with 
h,>O) then the W matrix describes just the nonaffine part of the variation in shape among 
the objects (the part describable by local deformations). This can be visualized as a projection 
from the kp-dimensional tangent space (whose actual rank is kp -k-k-h-(k--1)/2-1) into the 
k@k-I)-dimensional subspace of the tangent space that corresponds to local deformations. 
Different choices of a reference result in different principal warps and hence different 
partitionings of the tangent space into affine versus nonaffine components. Different parti- 
tionings lead to different distances among the objects. Distances in the subspace correspond- 
ing to nonafi‘ine shape variation will be equal to or less than those obtained when all /L-/I 
dimensions are used. If CL > 0 then different choices of a reference also affects what one 
considers to be large- versus small-scale differences in shape. This is because scale is 
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tncasured by the reciprocals of the eigenvalues, h,. Thus, statistical analyses based on the 
partial warp scores (equation 9) will give numerically different results ifdifferent references 
arc used. Analyses based on similar references should, however. give similar results and very 
similar statistical conclusions. 

EFFECTS OF LINEAR TRANSFORMATIONS OF THE REFERENCE 

Ifwe consider only the nonaffine components of the thin-plate spline (i.e., matrix E 
is px(y-k-l)) then we can use equation (5) to compute the partial warp scores for specimen 
i. The effects of rotation, scaling and shearing of the reference can be represented as a 
premultiplication of X,. by a kxk matrix T. If T is orthonormal then using TX,. as the rcferencc 
(but keeping the original X,) will have no effect on the W,because the bending energy matrix 
is invariant to rotation of the reference. If T is not orthonormal then using TX, shears the 
reference, which requires a recomputation of the bending energy matrix because distances 
between landmarks in the reference will change. This leads to new matrices E and A, which 
result in new W, matrices that will differ in complex ways from those obtained originally. 
Thus an affinc transformation of the reference affects the estimates of the non-affine 
components of the W, through the effect of the transformation on the bending energy matrix. 

Translation of the reference by a k-dimensional vector t will have no effect on the W, 
bccausc 

[tl;,+XC)E=XCE (10) 

Translation, rotation and scaling the reference will not affect the estimate of the anisotropy 
obtained from the linearized Procrustes method, equation (7), because the method eliminates 
the effects of thcsc transformations initially. Bookstein and Sampson’s ( 1990) and Book- 
stein’s ( I99 I ) methods for estimating the uniform shape component by minimizing either 
Procrustes or Mahalanobis distances arc not intluenccd by the alignment of the refcrencc 
because [his method IS based on the use of Bookstein shape coordinates. 

EFFECTS OF LINEAR TRANSFORMATIONS OF THE OBJECTS 

Because a superimposition method such as a generalized Procrustes analysis is 
usually used to construct the reference as an average ofthe objects after alignment, a shearing 
of the objects leads to a change in the estimate of the reference (the consequences of which 
are described above). In this section we will, however, treat the reference as fixed. 

Based on the relationship given in equation (5), the effect on W, of a linear 
transformation of the ith object can be expressed as 

$ TX,EA-” 2 = TW, 
,I (11) 

where T is a kxk transformation matrix. Thus any effects of the premultiplication by T 

(scaling, rotation, or shearing) are passed directly on to the matrix of partial warp scores. 
This affects both the affine and the nonaffne components. If T is an orthonormal matrix then 
the space defined by the partial warp scores will be rigidly rotated and the distances between 
the objects will be unchanged. Thus an ordination of the objects produced in a relative warps 
analysis will be unchanged if T is orthonormal. If T is not orthonormal then the results of a 
relative warps analysis will be affected because the specimens will have changed shape as a 
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result of being sheared. On the other hand, statistical analyses such as MANOVA, canonical 

variates analysis, multiple regression analysis or the computation of Mahalanobis general- 
ized distances are invariant to the effects of premultiplication by T as long as it is of full 
rank, k. 

If instead of a constant matrix T one multiplies the ith specimen by T, then the ith 
transformation effects will also be passed along to the corresponding rows of the matrix of 
partial warp scores. This will change the results that one expects to obtain in an ordination 
of the specimens or any other multivariate analysis applied to the W matrix. Therefore the 
specimens should be aligned in some consistent way (e.g., by an orthogonal Procrustes 

analysis) before the matrix of partial warp scores is computed. The use of superimposition 
programs such as GRF (Rohlf and Slice, 1990b), GRF-ND (Slice, 1993b), or Morphometrika 
(Walker, 1994) is recommended in order to align the specimens before using programs for 
relative warp analysis (e.g., TPSRW, Rohlf, 1992, or NTSYS-pc, Rohlf, 1993b), partial warp 
regression analysis (TPSREGR, Rohlf, 1993~) or for the estimation of the uniform compo- 
nent (Bookstein, “Standard formula” article, this volume). Different alignments of the 
specimens (even when the same reference is used) will lead to numerically different results 
for analyses based on the W matrix. Empirically (J. A. Walker, personal communication), 
the differences are usually minor and the biological and statistical conclusions unaffected 
between the usual methods of least-squares and resistant fitting. 

The nonaffne components of W are not influenced by a translation of the objects by 
a vector t (or even ti) due to the same type of relationship shown in equation (IO). 

Translation, rotation and scaling of the specimens will not affect the estimates 
of anisotropy obtained from the linearized Procrustes method, equation, because that 
method first aligns the specimens to the reference by means of an orthogonal Procrustes 
analysis. Shearing the original specimens will of course affect any estimate of the 
uniform shape component. The estimated direction of the principal strain for each 
specimen will be affected because it is expressed relative to the initial orientation of 
each object. Bookstein and Sampson’s (1990) and Bookstein’s (1991) methods for 
estimating the uniform shape component by minimizing either Procrustes or Maha- 
lanobis distances will not be affected because those methods are based upon the use 

of shape coordinates. 

EFFECTS OF DIFFERENT CHOICES OF VALUES FOR a 

The effect of different choices of values for CI in the computation of the partial warp 
scores, W, is to determine how the matrix of eigenvalues, A, of the bending energy matrix 
is used to weight the principal warps. Because the diagonal matrix Wxi2 is the right-hand 
factor in equation (9), its effect is just to weight the principal warps. Although u is a 
continuous variable, it is most commonly set to either 0 (to weight the principal warps 
equally) or 1 (to weight them by the reciprocals of the square roots of their eigenvalues so 
that large scale features in the reference are given greater weight). 

Multivariate statistical analyses using W as a “data matrix” will give numerically 
different results depending upon the value for CI unless the analysis is invariant to scale. 
Statistical analyses that are invariant to scale (such as MANOVA, canonical variates analysis, 
discriminant functions and multiple regression analysis) will not be affected by different 
choices of values for CL On the other hand, principal components analysis is sensitive to the 
scaling of variables and thus the results of a relative warps analysis will depend on the value 
of IX (Rohlf, 1993a). 
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Figure 1. An example of a set of three landmarks whose relative positions in two spccics differ in part by a 

reflection. A. Urunotaenia lowii. B. Ortho&onl~Gu signifira. Images of mosquito wings wcrc scanned from 
illustrations m Carpenter and LaCasse (1955). 

DISCUSSION 

As mentioned above, Lele ( 1993) gives a different definition for form space. He uses 
a different definition because his methods are based on matrices of Euclidean distances 
among landmarks and cannot distinguish between a configuration of landmarks and its mirror 
image. Although invariance to reflection may sometimes be a convenience when working 
with incomplete specimens of bilaterally symmetric organisms, it can also be a serious 
limitation. Certain types ofdifferences in shape will not be detectable, and nonsensical shape 
comparisons can result if reflections are ignored (see Fig. I for an example). Although it is 
much easier to find examples based on just three landmarks, such as shown in Fig. 1, 
examples can be constructed involving any number of landmarks. Differences due to 
reflection must be considered shape differences unless one knows that the organism itself 
has been reflected. Lele (I 993) also states that form space is of pk1)/2 dimensions-be- 
cause that is how many unique elements there are in a pxp distance matrix. However, these 
distances are partially redundant. The space corresponding to all possible physically realiz- 
able configurations of landmarks can occupy at most a pk-dimensional space. As discussed 
above, by fixing differences due to translation and rotation, the dimensionality is reduced to 
pk-k-k(k-I )12. 

It is interesting to compare statistical analyses based on principal warp scores with 
those based on the residuals from a superimposition analysis. If the reference used in equation 
(4) is the consensus configuration from an orthogonal generalized Procrustes analysis and 
if the X, are the coordinates of the specimens after alignment with the reference (as is the 
recommended procedure, F. L. Bookstein, personal communication), then the elements of 
Vi are the residuals that are examined (usually graphically in a Procrustes analysis) to look 
for differences in shape. The square root of the sum of the squared elements of Vi is the 
Procrustes distance between the ith specimen and the reference. If c1= 0 and if all p principal 
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ways are retained in matrix E in equation (4), then the W, matrices are just a constant times 
a rigid rotation of V,. The V, and W, matrices contain the same information, and standard 
multivariate statistical analyses based on them will give equivalent if not identical results. 
Slice ( l993a) gives examples of statistical analyses based on the coordinates of specimens 
aligned using superimposition methods. Slice ( 1993a) also contrasts the results with those 
based on partial warp scores. 

Lele ( 1993) makes much of a supposed inconsistency of superimposition methods to 
estimate an average configuration of landmarks. Unfortunately, his analysis is based on the 
average of coordinates of landmarks in his definition of form space (spccimcns not size 

standardized), which does not correspond to any of the published methods. His example of 
a dataset for which Procrustes analysis yields an inconsistent estimate has a very extreme 
covariance structure. Interestingly, his own method, EDMA, also yields inconsistent csti- 
mates for that case (C. R. Goodall, personal communication). Procrustes analysis has been 
shown to yield consistent estimates for the case of circular isotropic error (Kent and Mardia, 
in prep). This paper is mostly concerned with shape statistics based on projections onto the 
tangent space (e.g., analyses based on partial warp scores) rather than operating directly in 
shape space. This is because the tangent space has a Euclidcan metric and thus conventional 
multivariate statistical methods can be applied. For small variation in shape the approxima- 
tion of shape space by a tangent space is very good. The issue of consistency dots not stem 
critical for multivariate statistical analyses in the tangent space because small differences in 
the rcferencc result in only slightly different orthogonal matrices to bc used to detcrminc the 
projection into the tangent space (Rohlf, in prep). Some researchers (e.g., Goodall, l992a; 
Kent, 199 I ) are, however, working on the development of specialized techniques that operate 
in shape space. Such work is important because it will provide new methods capable ofexact 
analyses when variation in shape is not small. 
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