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FOUNDATIONS
OF MORPHOMETRICS

Fred L. Bookstein

The University of Michigan, Ann Arbor, Michigan 48109

Introduction

Whether broadly (58, 60) or narrowly (10, 11, 14, 33, 34, 63) construed,
morphometrics clearly has something to do with the assignment of quanti-
ties to biologic shapes. In most fields, the advent of quantification is fol-
lowed a few years later by a systematization of the exploratory quantitative
styles. At that time one encounters studies of the nature of information
captured and discarded by the various conventions, general families of
mathematical or statistical models mimicking relevant behaviors of the
natural phenomena under study, and so forth: in short, the contemplation
of foundations. In morphometrics this passage to introspection has not
occurred. There is one classic in the field, D’Arcy Thompson’s On Growth
and Form (80), which argues that form should be modelled as the expres-
sion of physical laws. This stance, now badly dated, has not been replaced
by any other consistent point of view. The only more recent paper I have
encountered that speaks of a discipline for information captured in the
course of morphometric investigation is Green’s critique of methods for
studying axial growth in plants (36). Otherwise, the morphometric litera-
ture is entirely application-oriented rather than methodological.

In this essay I attempt a preliminary remedy: a framework into which
specific morphometric methods can be fitted (with more or less difficulty,
as will become clear from my section headings). The rationale for that
framework lies in a duality underlying comparisons among biologic forms.

Morphometrics as Biology and Geometry

Morphometrics, in my view, is the empirical fusion of geometry with
biology. Its methods must explicitly take cognizance of two wholly distinct
sources of information—geometric location and biologic homology.
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“Homology” is here construed as a smooth correspondence that transforms
any two related forms one onto another in accord with appropriate ontogen-
etic or phylogenetic criteria. Morphometric quantifications arise from the
interaction of these two sorts of information. Practitioners of morphomet-
rics should be extracting information from the geometry of biologic shape
for particular comparative purposes, such as the study of growth, abnormal-
ity, or taxonomic differences.

In this preliminary exploration I restrict the notion of “shape” to bound-
ary information only, rather than extending it to measure textures and other
spatial fields and densities. The boundaries of which I speak are to be simple
closed curves (in the plane) or closed surfaces (in space) with analytically
proper, piecewise-smooth insides and outsides. For instance, the notion of
homology as a differentiable mapping cannot be easily extended to biologic
fractals (50).

In the presence of a homology function, a set of biologic shapes can be
measured in a great many ways. We might measure the finite distance
between the homologs, in the general form, of any two points in any
particular form. Should we wish the segments to begin and end on the
boundary, there is a two-fold infinity of transects we might choose from. We
may further consider arbitrary ratios of these quantities, integrals, and so
forth. From this range of possibilities the morphometrician’s task is to
construct measures optimal for particular explanatory purposes—trends,
contrasts, comparisons. In this role its purpose is distinct from that of
multivariate statistics, which from a vector space of variables tries to con-
struct the most useful linear combination. The space over which morpho-
metric methods search is geometric, not algebraic; their purpose should be
to generate a scheme of best simple measurements, not a single best compos-
ite. The exercise of morphometrics, then, lies squarely in-between “digitiza-
tion” (acquisition of purely geometric information) and familiar statistical
manipulations upon measured variables; it represents a specialized task, the
optimizing of variables that will be measured. For instance, the biortho-
gonal method (14, 19) extracts a one-parameter family of finite distances
that best capture the contrast of a pair of forms. From these, single propor-
tions that discriminate well can be selected by inspection. In an analysis of
multiple populations, various geometric regions into which the form can be
fragmented may give rise to their own excellent discriminators; once the
geometric investigation has been completed, the multivariate statistics may
then distill these into a single optimal score.

In this context of the interplay between geometric location and biologic
homology, consider Thompson’s method of Cartesian transformation (14,
80), the fundamental construct of morphometrics. In this strategy one
mathematical object, a deformation, is used to represent explicitly the rela-
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tion of a pair of forms. Although we may view these objects in pairs of
sketches each displaying one form, in essence the method relates two coor-
dinate systems upon the same figure (in the classic example, upon the
deep-bodied fish, Mola). One of the coordinate systems is the ordinary
Cartesian one on that form—it is not ordinarily drawn, of course; the other,
which is drawn, is the coordinate system for homologous points in the
comparison form. By this device the essentially biologic information, about
homology, is communicated most efficiently.

In another version of this same interplay, a sample of the homology
function upon a form may be taken in a special way, by a collection of
named landmarks, as in cephalometrics. Not all “landmarks” are in fact
homologous according to biologic criteria, however; for a discussion, see
Moyers & Bookstein (55) or chapter iii of Bookstein (14). Only the biologic
homology of two configurations makes meaningful their scientific descrip-
tion by collections of geometric points, distance measures, or coordinates.
There are far more homologous measures on configurations than are used
in typical multivariate morphometric data sets; success in selecting particu-
lar raw variables in the absence of protocols is a matter of luck.

Data

A morphometric data set ought to consist of a set of forms, archived by an
adequate number of strongly patterned distances, and a set of homology
maps relating the forms in pairs. The forms may be archived by either
Cartesian coordinates or distances among landmarks. The ordered format
of the data as collected is a convenient device allowing the reconstitution
of these maps, the transformations between forms, from the separate
coordinates or distances.

DISCRETE SAMPLES If a form is to be modelled as a polygon of straight
sides, it is most conveniently sampled at its vertices. These must of course
be landmarks; their homology, sensu Jardine (42a), will then be implicit in
the sequence of data entry. A polygon may be archived either by its Carte-
sian coordinates in an arbitrary or standardized system of axes or by a
pattern of interpoint distances that comprises at least a determinate triangu-
lation. A scheme of measured distances is inadequate if it does not permit
the reconstruction of the polygon it purports to measure, since information
is thereby lost permanently. Data sets of discrete landmarks in three dimen-
sions are digitized either by their explicit Cartesian coordinates in a three-
dimensional digitizing apparatus, or by photogrammetric synthesis of a pair
of two-dimensional projections (8, 32, 67). For most morphometric investi-
gations, no other quantities (e.g. angles or proportions) are of any use in the
archive. As we do not yet know what quantifications will ultimately emerge
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as variables for statistical analysis, there is no point in presuming their
identities so early in a study.

CONTINUOUS SAMPLES In the discrete sample each point bears its full
dimensional complement of degrees of freedom: for plane data, two; for
spatial data, three. When boundaries are sampled continuously, each point
carries only one degree of freedom, its distance normal to the line or surface
through its neighbors, even though two or three coordinates must be used
to record its position. In two dimensions the digitizing of continuous traces
is fairly standardized: An underpaid clerical traces around an outline on an
electronic digitizing tablet, sampling points at a spacing approximately
inverse to curvature of the boundary. [See, for instance, the introduction to
Riolo et al (65).] For three-dimensional data there is a much greater diver-
sity of techniques conveniently assembled in two SPIE proceedings (4, 27).
[I also encourage the reader to view Robert B. Livingston’s magnificent
movie The Human Brain (47).] For the typical points of a surface, record-
ing schemes include serial sections, moiré projections, grid projections,
stereopair photography, and others. A more recent technique is the auto-
matic extraction of boundaries from solid computed tomography (5).

All these schemes archive points, with their one or two coordinates of
redundancy. One may instead sample /ines on forms in two dimensions (e.g.
15), or circles touching twice (12, 86). These geometric objects often quan-
tify meaningful features of form much more directly. Other two-dimen-
sional schemes are reviewed in Bookstein (14). For spatial data a similar
variety is geometrically possible: one may represent forms, for instance,
with spheres (6, 57). In general, the varieties of surface representation—
planes, spheres, quadrics—depend on the number of derivatives coded for
small regions (16). All these schemes would be more efficient than the
record of Cartesian coordinates; as of this writing, none has been seriously
tried.

COMPUTING HOMOLOGY In the discrete schemes, homology is embed-
ded in the order of data entry. Otherwise it must be computed by one or
another interpolation rule using the landmarks as points of calibration for
some nonlinear function. For instance, homology can be extended along
boundary arcs between landmarks linearly in arc-length; this one-dimen-
sional homology, in turn, may be extended throughout the interior of a pair
of related forms by relaxation according to the elastic equation (14a). Tobler
(82) interpolates according to the same partial differential equation but
starts with data in the form of a correspondence between two discrete
meshes. Others have tried the simplest explicit nonlinearities of finite-ele-
ment analysis of displacement (46), which correspond to no particular
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constitutive equation. Yet another solution denies the problem by digitizing
quasilandmarks, proportional divisions along otherwise landmark-free arcs,
and ignoring all other points of the plane (85). In this same spirit of ignoring
interiors some workers define a body axis, then make homology of boundary
points either side of the axis to be linear with respect to the axial coordinate.

All these homology functions depend on extensive listings of data. Sneath
(77) attempted instead to compute homologies by a single polynomial; but
this scheme, in spite of the interest it has evoked, seems incapable of being
brought into a biologic framework, since some homologies are fitted much
more exactly than others. A recent statistically robust version (71) separates
the form into two regions, in one of which homology is geometrically
simpler.

A COMMENT ON COORDINATES Coordinate pairs or triples, the ele-
ments of the geometric record, are not the quantities we want to send on
to statistical analysis: They are no good as variables. Under continuous
sampling, of course, they are not aligned from form to form; but even in
the discrete case they are not of themselves homologous quantities. A
coordinate is a function on the form. The sets where it is constant are
coordinate curves (in the plane) or surfaces (in space) linking points that
are quite literally co-ordinated (20). Cartesian coordinates, for instance, are
simply distances from point to line, or point to plane; but the lines and
planes of reference, in their straightness, misrepresent homology of position
inside the form. Usually one axis is chosen to link two landmarks and the
other is taken perpendicular to the first through some third landmark. The
former axis can be biologically meaningful only between the two landmarks
delimiting it; the latter axis is generally not homologous at all from speci-
men to specimen (21). Other coordinate curves as interesting as the Carte-
sian flats—circles or spheres, confocal conics, bicircular quartics (20)—
likewise have no a priori claim to be measuring anything biologically mean-
ingful. One would do better to invoke coordinates fitted from features of the
form itself. For instance, Hansell et al (37) fitted a standardized coordinate
system to describe the position of mite setae in a consistent scheme. [For
another example, see (69).] As a sample of distances, Cartesian coordinates
have the severe additional flaw of representing displacements in only two
(or three) directions, whereas the general morphometric measurement
scheme requires an even sampling of directions.

This is not to say that coordinates are not worth archiving. Where points
can be followed homologously the various models of continuous deforma-
tion all proceed by taking derivatives coordinate by coordinate; in the
Cartesian scheme the formulas for this manipulation are by far the simplest.
For the testing of some hypotheses the statistical assessment of reduced sets
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of coordinates is sufficient. For instance, Holloway (40) computes mean
spherical coordinates of the points of a brain endocase placed in standard-
ized relation to the coordinate system. Using these he shows that the lunate
sulcus of the Taung specimen is not particularly intermediate in one ostensi-
ble phylogenetic sequence. Surfaces can be represented on a plane by use
of certain standard cartographic tricks as well (7). Corruccini (29) executes
multivariate discriminations via Cartesian coordinates in three dimensions
(and by their log-transforms and shifted log-transforms), then discovers
these to discriminate about as well as other systems of arbitrary distance
analyses. Brower and his colleagues (23-25) model series of forms by pre-
dicting the exact values of coordinates from their own factor loadings. Yet
in the typical “advanced” application the arbitrariness of the Cartesian
framework is compounded. For instance, Luder (48) computes group mean
differences in growth by vector subtraction in three Cartesian systems over-
lapping on the craniofacial form. The origin of each is interpreted to have
been translated in the system of another.

GEOMETRY WITHOUT HOMOLOGY One can measure forms that bear
only two landmarks, or one, or none. The methods of orthogonal decompo-
sition, such as Fourier analysis, treat form as a function of some uniform
abstract parameter, such as azimuth out of a point, or, for basically linear
forms, aliquots along an axis. Relations between forms must then be mod-
elled as differences in the value of functions evaluated at the same parame-
ter, so that “change” must be along lines of unchanging parameter; the
biologic geometry of transformation is thereby wholly lost (22). One version
(83) of the craniofacial “growth profile,” for instance, is essentially the first
term of a difference of Fourier series, subject to this limitation and others
as well (18).

Moss and his colleagues (53) have proposed a protocol for optimal polar
coordinates. They would locate an ““allometric center” with respect to
which divergence of growth homology from radial displacement, properly
weighted, was a minimum. In that it would inspect the information that all
other versions of this tactic have discarded, the method is enlightened. In
fact the model fails (54): No such center seems to exist. The linear equiva-
lent of this is superposition along a curving medial axis (19, 86).

Many workers have considered the direct reduction to parameters of
outline forms or arcs by functions from simple families. Sampson (68), for
instance, used two landmarks (the centers of the first molars) to delimit the
maxillary dental arch, then modelled the sequence of observed tooth centers
between by a single arc, a best-fitting conic section bearing three degrees of
freedom. There is an elegant geometry to the statistics of these arcs. For
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instance, the confidence region for an arc of highest probability (equivalent
to a “mean”) can be drawn directly around that mean. Sampson does not
ascertain the extent to which subsequent statistical analysis might depend
on the pair of teeth picked to anchor the arc, nor does he estimate the
information from the coordinate base that is discarded by the three parame-
ters of the arc—for instance, the relative spacing of teeth along the arch.
Most other procedures fitting parametric forms to scatters must be ques-
tioned in the same way. For instance, Schudy (70) models the outline of a
beating heart by. a linear combination of low-order spherical harmonics; but
it is not known whether the information discarded in the fitting, phase by
phase, is important in the analysis of the cardiac cycle. See also Geiser et
al (35) and Kovatz (45) for the intuitive treatment of complex forms using
only a few coordinates.

These imprecise representations of geometry are most often used for
estimates of volume or area. See Cook & Cook (28) and Pierce et al (62)
and many of the papers in Heintzen & Bursch (38). The American school
of biostereometrics under Herron (e.g. 39) likewise concentrates upon these
integral measures, for which the notion of homology enters only weakly:
The volume of the legs must be measured homologously, of the trunk, upper
limbs, etc.

HOMOLOGY WITHOUT GEOMETRY In another style of incomplete
morphometrics the form is mostly lost but its contrasts are nevertheless
closely followed. Alberch et al (2), for instance, represent size and shape
variables by the Greek letters o and 3, but otherwise do not define them.
The resulting analysis is basically a model of ontogenetic and phylogenetic
time; it tends to be applied to real data only in a univariate or bivariate
context (1).

In other cases, the “form” is an assemblage of independent organisms
that can be followed by computerized image analysis. See, for instance Potel
& MacKay (64) on slime mold aggregation, or Katz et al (44) on measures
of fish schooling behavior.

Many shapes change reversibly by rigid motion between articulated parts,
as at joints. Measurement of this change involves only the usual screw
analysis of classical mechanics; one need not measure forms at all. A goodly
portion of the biomechanical literature is presented in terms of these purely
kinematic parameters; for a critical review, see Soudan & Audekercke (78).
Lupkiewicz et al (49) measure dysfunction of the temporomandibular joint
by variance in the screw parameters over time. For most problems in
evolutionary and developmental biology, however, the assumption of rigid
motion cannot be sustained. Rune et al (66) conclude that descriptions of
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craniofacial growth based on observations of metallic implants in the maxil-
lae are simply inconsistent with descriptions from the positions of land-
marks. Attempts (e.g. 42) to refer to “kinematics of growth” as rotation are
flawed in that the model does not allow for linear extension between land-
marks over time.

The Tensor Method

Recall my characterization of morphometrics as the extraction of informa-
tion from the interplay between geometric coordinates and biologic
homology. In my view, successful morphometric analyses are all variants
of a single approach, the modeling of form-change as deformation. 1 have
discussed the historical development of this approach elsewhere (13-14).

There are two systems of notation for arriving at the proper formaliza-
tion, differing only in the stage at which one chooses to differentiate coordi-
nates. In one approach, points are considered to be simultaneously
undergoing displacements in a single coordinate system: They have “velo-
cities”; the model is borrowed from compressible fluid flow. I do not review
this formulation here, but instead refer the reader to several good sources
(30, 31, 72-74). In the remainder of this section I present another explana-
tion of the method, in terms of material derivatives. These, in effect, analyze
change at any point in a coordinate system registered precisely there, so
that nothing has any velocity but nevertheless all pairs of points move
apart.

The method grows out of my earlier technique of biorthogonal analysis,
a quantification of D’Arcy Thompson’s old method of Cartesian transfor-
mation. It was Thompson who realized that shape change was not to be
measured by numerical differences among measures of shapes separately.
Rather, shape change is a geometric object in its own right, the deformation
taking one form into the other in accord with biologic homology. Thomp-
son suggested this object be depicted by its effect on a grid laid over one
form; he always began with a Cartesian (square) grid. The figures produced
in this style are endlessly intriguing but do not directly lead to any effective
quantification or feature extraction.

The fundamental problem of Thompson’s original method is the selection
of that starting grid, which leads to an asymmetry: A grid strictly square
over one form is transformed into a curvilinear grid having in general no
mathematical regularities. I suggested drawing instead a grid that has the
same geometric properties in both forms: the grid along the pairs of direc-
tions that begin and end at 90° to each other. One of these directions
manifests the least dilatation (specific rate of change of length between
forms) and the other the greatest, of all directions, locus by homologous
locus (14).
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In its original form this technique applies to forms only in pairs. It
executes its geometric computations in full spatial detail, but it is unable to
aggregate over sets of starting forms, even though the distinctions among
them are irrelevant to the description of their transformations. It was the
specific aim of the present method to lift this limitation, at the lowest cost
in lost information, so that a representative average transformation could
be computed over diverse populations undergoing similar shape changes.
The average will approximately preserve the optimal properties of the
original biorthogonal formalism—one direction of maximum rate of
change, one of minimum, symmetrically placed (at 90°) and varying over
the forms.

The order of computations will vary depending on the style of compari-
son under investigation. For a study comparing shape changes longitudi-
nally observed in multiple groups, the method has five steps, as follows.

1. Each outline is simplified into a configuration of anatomical land-
marks. We consider the landmarks in triples as vertices of many overlap-
ping triangles. These are not biologic entities (except for their vertices) but
planar abstractions. Their edges may pass through various tissues and
through air.

2. Case by case and triangle by triangle, we deform the whole area of one
triangle onto the other, Figure 1. For triangles, these maps may be taken
as homogeneous or uniform, and take circles to ellipses the radii of which,
Figure 2, are proportional to dilatations in each direction. The ellipses have
a longest and a shortest radius—the principal directions, Figure 3, direc-
tions of greatest or least percent change in the course of the deformation.
These lie at 90° both before and after deformation.

The analysis separates the observed change into one component for size
change and a second for shape change. The product of the dilatations is the
ratio by which the area of the triangle has increased; their quotient is a
measure of the anisotropy, or directionality, of this size change. One may
think of any distortion as the composition of a pure size change, altering
nothing but scale, and a pure shape change, leaving area alone. Note that

NI

./ \,

Figure I In the tensor approach, we model the relation between two homologous triangles
as a uniform deformation linking their interiors. :
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I

B [ B’

Figure 2 Uniform deformations take circles to ellipses expressing dilatations, dimensionless
rates of change of length direction by direction.

even though form cannot be decomposed as “shape plus size,” form change
can be so decomposed, triangle by homologous triangle.

One arm of the cross is along the direction of largest dilatation, the other
along the direction of smallest dilatation. These ratios are taken between
images for distances along homologous segments. We can instead compute
proportions, ratios within a single form. Change in proportion may be
measured as the quotient of the dilatations in the two directions that the
proportion is comparing. Then of all proportions within the triangle, that
of distance along the major axis to distance along the minor axis increases
fastest over the change. We thus arrive at a simple optimal shape discrimi-
nator. Proportions between pairs of directions placed symmetrically with
respect to the principal axes are invariant across the deformation. When a
principal axis makes an angle of 45° with the bisector of a vertex angle of
the triangle, the angle measured at that vertex is approximately constant.

Lines drawn in the principal directions through any vertex intersect the
edge opposite in points directly toward or away from which that vertex is
being displaced. In any deformation of one triangle into another, after
adjusting for general change of scale, one vertex may be viewed as moving
toward a point between the other two, and one away.

The appropriate polarity for description of shape change is not horizon-
tal/vertical, the language of coordinates, but rather stretch/shrink, the
language of tensors. Changes in the relation of point to line segment are
expressed not by a vector of displacement but by a tensor of deformation:

A

B8
B
Figure 3 The biorthogonal analysis of a transformation is the pair of crosses of directions,

one in each form, which are at 90° both before and after transformation. These are the axes
of the ellipse in Figure 2 and their preimages in the circle. They bear the extremes of dilatation.
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two rates of change in two orthogonal directions. This descriptor resembles
not at all a simple contrast of coordinates or interlandmark distances taken
from the archives of forms separately.

3. Triangle by triangle, we average dilatations in directions connecting
any vertex to a point dividing the opposite edge in a fixed fraction. For
instance, an average dilatation is computed separately for each of the three
edges of each triangle of landmarks; for each of the three median lines,
which divide the sides opposite in the ratio 50:50; and so on. This accords
with the homology function induced by the uniform transformation of
Figure 1 for deformations between triangles of a series.

4. Triangle by triangle, we determine and depict for each group the
greatest and least mean dilatations over all directions within the triangle.
These may be taken as the appropriate mean biorthogonal analysis. Like
any other means, they have standard errors of sampling, and also some
selection bias.

If all the crosses for all the shape changes of a population are aligned in
the same directions (as determined by our homology convention), the maxi-
mum of the mean dilatations would be the mean of the separate maxima,
and likewise the minimum. The anisotropy of the mean change would then
be just the mean of the anisotropies of the separate changes being averaged.
If the directions of extreme dilatation for the individual deformations wan-
der far from mutual alignment, then the averages will mix extremal dilata-
tions along principal directions of certain shape changes with middling
dilatations along others, attenuating the extrema of those averages. The
ratio of anisotropy of the means to mean anisotropy is a useful statistic,
a sort of fraction of variance explained by shape change.

5. Group by group in pairs, for any triangle we determine and depict as
well the algebraically greatest and least differences in dilatation. These lie
in the directions along which distance change in one group most exceeds,
or most falls short of, growth in the other group. These last derived data,
dilatations along the (homologously defined) directions of algebraically
greatest and least difference in dilatation between the groups, constitute the
quantification of group differences in deformation.

The analysis proposed here for a single pair of triangles is fully equivalent
to the simplest case of the finite-element description familiar in other
branches of biomechanics (74). That literature, however, seems nowhere to
have considered the problem of averaging over whole populations that are
continuously changing their shapes. Alternative procedures can be imag-
ined that average shapes rather than shape changes or that map all deforma-
tions upon a “standard.” In such approaches the computed mean, although
arbitrary in certain crucial particulars, will be an exactly linear map with
principal strains at exactly 90°. But this does not extend to comparisons
between groups.



462 BOOKSTEIN

AN EXAMPLE Figure 4 displays two adjacent triangles describing the
history of two groups of human children undergoing orthodontic treatment
[see (21), Sec. V]. Each child was radiographed at two ages separated by
about two years and the changes averaged according to the procedure just
reviewed. The landmarks are the points Sella, Anterior Nasal Spine, Men-
ton, and Nasion of the lateral cephalogram; the data were in the form of
coordinates digitized carefully as described by Baumrind & Miller (9). The
two groups are a Control group and one subjected to cervical traction (i.e.
orthodontic headgear) in an effort to lessen overbite.

Consider first the lower triangle, S-M-A. The panel at the upper left,
above the one naming the vertices, presents the mean annualized Control
history. The empirical maximal dilatation, printed as “2.08,” represents a
mean increase in length of 2.08%/yr in the direction from Menton to a
point .3 of the way from Sella to ANS; the observed minimum represents
a mean increase of .71%/yr in the direction from ANS to a point .45 of the
way from Menton to Sella.

Passing to the right along the top row, still looking at the triangle S-M-A,
we discover principal axes for the treatment group that are nearly perfectly
aligned (to the .05 fractional spacing the computation relies on) with those
we just noted for the Controls. The dilatations in these directions are,
however, altered.

CONTROL CERVICAL

N

g0

SEL NAS

ANS

MEN

Figure 4 Mean annualized observed deformation over about 24 months in two triangles of
cephalometric landmarks for two populations of children, one undergoing orthodontic treat-
ment. Analysis from (21); data courtesy of S. Baumrind (9). In the top row are principal axes
of mean change; at lower right is the relative tensor, the “treatment effect” optimally contrast-
ing the mean deformations between the groups. Dilatations are reported in units of percent
increase per year.
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The “relative dilatations,” the algebraic differences of treatment and
Control dilatations, are presented in the bottom row of the Figure. The
contrasts consists in distortion by an additional 1.18%/yr of vertical exten-
sion and a shortfall of 1.39%/yr horizontally. (“Vertical” and “horizontal”
are defined here with respect to the coordinate system of the diagram,
oriented on Sella-Nasion.)

For the upper triangle, Sella-ANS-Nasion, the histories and also the
treatment effect are somewhat different. For Controls, the deformation of
this triangle, due to growth, is again approximately along vertical and
horizontal principal axes, with an anisotropy of 1.3%. But for the treatment
group, note (in the lower right panel) the additional expansion of the
distance from Nasion to the Sella-ANS line by 1% per year. This is de-
scribed, in cephalometric jargon, as “rotation of the lower face downward
and backward.”

The method this example demonstrates has important implications for all
comparative studies of geometric form. Note that the shapes have not been
measured, merely archived; no preconceptions of specific variables have
interfered with the technique’s construction of optimal discriminations and
optimal descriptions of change. The orthodontist can thereby detect regu-
larities in the action of the cervical appliance that he was unable to ascertain
in any other elementary way. For systematics this approach implies the
construction of measures affer analysis of shape change, a complete reorien-
tation of multivariate morphometrics.

Multivariate Morphometrics

I have left to the last the discussion of multivariate morphometrics, the
commonest version of morphometrics in our journals and the one taking
least note of biologic homology. [For instance, none of the texts in the field
(cf 11, 63) seem to have any figures of organisms; they are filled instead with
explanatory statistical diagrams and scatters.] The multivariate tradition
assumes that homology has been somehow automatically arranged, outside
the statistician’s ken, in the course of variable definitions. Any operational,
reproducible definition of a quantity—*“the distance from the anteriormost
point of structure A to structure B,” or “the diameter of region six at its
narrowest”—is assumed to yield a measure homologous from form to form.
In practice some are homologous, some not; I have sketched the general
rules elsewhere [(14), Ch. iii]. The situation can be made quite a bit worse
by passing too soon to “shape variables,” which are arbitrary ratios or
regression residuals [cf (41, 51) and references therein]. These, although
technically dimensionless, are still generally correlated with size; because
they are measured indirectly they complicate geometric modeling still fur-
ther. The linear scores produced by the usual multivariate techniques serve
as input to clustering or ordination procedures, which are then interpreted
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biologically. I refer the reader to several good examples of this style of
analysis (2, 59, 61, 81). The most recent general review of the field is by Neff
& Marcus (56).

In my opinion the success of this general approach is surprising, since no
care is taken to determine whether crucial information has been discarded.
Multivariate morphometrics proffers no model for generating the measure-
ments it studies out of the fundamental geometrics of plane or spatial shape
(70a). Good morphometrics, I believe, is incompatible with the notion of
a predetermined character set. Rather, the characters should be defined post
hoc as a reflection of the comparisons they are intended to capture. “Shape
variables,” for instance, report an analysis but ought not to drive it; they
are latent, to be inferred, not observed.

The lack of sophistication in the generation of variables leads to logical
problems and paradoxes. For instance, seriation of forms cannot be accom-
plished unambiguously by separate measurements (17). For any two forms
there are arbitrarily many homologous measures on which they agree, so
that a third form, whatever it may be, cannot lie unambiguously in-between.
One ought not to let the algebraic machinery of statistics select from a
motley collection of distances a linear combination optimal by some scalar
criterion. One must ask what information is omitted and what distorted to
fit the statistical conventions, and also what geometric information is
wasted that could have been invested in more sensitive measures.

To make biologic sense of multivariate morphometrics, in particular of
the general level of satisfaction expressed by its users, one needs a concep-
tual model of the step its practitioners are skipping: the link between linear
combinations of variables and form-change. This link is best expressed in
the factor model introduced by Sewall Wright in the 1930s (88) and redis-
covered by Jolicoeur (42b). Any variable selected from a space of possible
measures will have Joadings on hypothetical factors emerging from statisti-
cal analysis. These loadings specify the ordinary simple regression of the
variable upon the factor. A change in the factor score thereby alters all
variables simultaneously to manage the geometry of change, difference, or
growth of forms.

The joint log-linearity of all these relations over large ranges of varia-
tion is the general subject of multivariable allometry (26, 51, 75, 76, 79).
Many writers (e.g. 43) miss the point of this exercise. Allometry is a
discussion of the role of latent variables, like “general size,” not of de-
tailed bivariate associations among observables. The general philosophy un-
derlying the role of unmeasured variables in empirical science has been
reviewed (87).

In the previous section I showed how the generalized morphometric
analysis of comparisons demands a sampling of loadings in all directions at
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typical points of the form. The two dimensions of possible distance mea-
sures between boundary homologs, for instance, can be counted as one
dimension’s worth of directions per interior point. The directional depen-
dence of these rates at a point is a straightforward two-factor model, with
trigonometric loadings. One best quantifies this directional variation by
noting the two loadings in the two principal directions. Therefore that
sample of directions and distances is best that minimizes the expected
failure of one of the finite measures to align with these directions. This is
true regardless of the nature of the transformation represented by the
loadings, whether it be an actual observation of growth averaged over a
population, a comparison between forms, a comparison between growth
patterns, or a comparison between forms corrected for growth pattern. For
species difference at constant size, for instance, Humpbhries et al (41) con-
struct, as a linear combination of the first two interspecific principal compo-
nents, a factor orthogonal to size. In fish growth morphometrics, principal
axes seem to be at 45° to the axis of the fish (B. Chernoff, personal communi-
cation). The traditional measurement scheme of axial lengths and body
depths thereby loses as much information as it possibly could lose; but a
collection of measures including those at 45° to the axis shows much greater
diversity of factor loadings and much better discrimination (78a).

The optimal summary of any of these comparisons is a single tensor
variable, combining size-change and shape-change information, computed
at every locus of the form; and its approximation in multivariate morphom-
etrics is the entire pattern of loadings interpreted as a transformation. It is
essential that the system of linear measures permit a full reconstruction of
the original object geometry, so that the predicted values at any factor score
form an archive of a predicted form. Furthermore, it is best if the distances
measured be generally short instead of long, that they not be overlapping
as vectors, and that their directions be well-distributed around the compass.
This is neatly managed by taking edges and diagonals of quadrilaterals of
landmarks (78a).

When this discipline of measurement design is accepted the results of
multivariate morphometrics will serve a dual role. (¢) As factors they give
rise to expected values for all distances, excpected values that change as
“size” or “species” changes, so that change in the factor may be interpreted
explicitly as a transformation, a change of form in accord with homology.
That is, the factors capture an approximation of the information necessary
to continue with the morphometrics of the configuration under study. ()
As patterns of loadings they will suggest optimal contrasts between poles
of the comparisons they embody—Ilarge versus small, or species A versus
species B, or male versus female—even if the possibility of further measure-
ment is absent.
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Concluding Remarks

I have explained the relation between the two main styles of contemporary
morphometric analysis, the measurement of transformation via geometri-
cally ordered tensors and the measurement of form via geometrically unord-
ered vectors. These may be expected to arrive at similar but not equivalent
analyses of particular comparisons, trends, or contrasts; but the findings of
the transformation point of view have priority, as they may determine
variables for a subsequent multivariate study.

There is no clear next step, but instead a multitude of intellectual prob-
lems remain to be addressed. The transformation model, for instance, need
not accord with the diverse mechanisms by which organisms actually bring
about changes or distinctions of form. The expression of displacements
among landmarks by use of the tensors is meaningful only to the extent that
the transformation is a smooth deformation. There should be no tearing of
the picture plane, with points previously close becoming widely separat-
ed—mno slip of one structure relative to another, no passage of points from
interior to exterior of closed curves, and no discontinuous opening of an
angle. There should be little motion of one part over another by projection
from other planes, nor drift of one structure through another; and there
should be no creation of new “coordinate mesh,” no tissue not smoothly
accounted for in earlier triangulations. To all these problematic variants
will correspond geometric adjustments of the model. For instance, the
tensor treatment of accretionary growth, wherein coordinate mesh is con-
tinually created, is sketched by Moss and colleagues (52, 84).

The statistics of these tensors are likewise in a preliminary state, as I have
reported in another essay (21). The machinery of that essay yields average
deformations for populations. For the technique to be of more utility,
quantitative correlation of growth with form should be allowed to adjust the
mean deformation. For instance, contrasts between species are different at
different sizes; this covariance is itself a tensor field worth extracting (78a).
We also have some technical needs regarding the sampling variation of these
mean principal dilatations, as they are chosen to be extreme values. And
averages should be computed that themselves average over all the triangles
as they pertain to each interior point, just as the extended biorthogonal grid
does (14).

Further work is needed to extend these foundations conceptually. It is
necessary that this notion of the two sorts of information, geometric and
biologic, be put on an axiomatic basis. For discrete configurations of land-
marks, when we measure distances of all points to all others, what is the
nature of the redundancy? Can we come up with optimal triangulations by
reference to some model of measurement error at the landmarks in various



FOUNDATIONS OF MORPHOMETRICS 467

directions? For continuous traces, the very space of functions we use to
represent the computed homology needs to be formalized and refined.
Complete information lies in a combination of position, tangent direction,
and curvature; how might it best be homologously sampled? For an early
suggestion, see Bookstein [(14), Ch. iv].

A resurrection of morphometrics from such foundations will make possi-
ble the design of sound measurement schemes in all manner of applied
contexts. The user of these techniques will then be justifiably confident that
his measures extract, without bias, the biologic shape information that has
been there all along.
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