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Summary

This paper discusses the thought processes involved in statistical problem solving in the broad sense
from problem formulation to conclusions. It draws on the literature and in-depth interviews with statistics
students and practising statisticians aimed at uncovering their statistical reasoning processes. From these
interviews, a four-dimensional framework has been identified for statistical thinking in empirical enquiry.
Itincludes an investigative cycle, an interrogative cycle, types of thinking and dispesitions. We have begun
to characterise these processes through models that can be used as a basis for thinking tools or frameworks
for the enhancement of problem-solving. Tools of this form would complement the mathematical models
used in analysis and address areas of the process of statistical investigation that the mathematical models
do not, particularly areas requiring the synthesis of problem-contextual and statistical understanding.
The central element of published definitions of statistical thinking is ‘variation”. We further discuss the
role of variation in the statistical conception of real-world problems, including the search for causes.

Key words: Causation; Empirical investigation; Statistical thinking framework; Statisticians’ experiences; Stu-
dents’ experiences; Thinking tools; Variation.

1 Introduction

“We all depend on models to interpret our everyday experiences. We interpret what we
see in terms of mental models constructed on past experience and education. They are
constructs that we use to understand the pattern of our experiences.” David Bartholomew
(1995).

“All models are wrong, but some are useful” George Box
This paper abounds with models. We hope that some are useful!

This paper had its genesis in a clash of cultures. Chris Wild is a statistician. Like many other
statisticians, he has made impassioned pleas for a wider view of statistics in which students learn
“to think statistically” (Wild, 1994). Maxine Pfannkuch is a mathematics educator whose primary
research interests are now in statistics education. Conception occurred when Maxine asked “What is
statistical thinking?” It is not a question a statistician would ask. Statistical thinking is the touchstone
at the core of the statistician’s art. But, after a few vague generalities, Chris was reduced to stuttering.

The desire to imbue students with “statistical thinking” has led to the recent upsurge of interest
in incorporating real investigations into statistics education. However, rather than being a precisely
understood idea or set of ideas, the term “statistical thinking” is more like a mantra that evokes
things understood at a vague, intuitive level, but largely unexamined. Statistical thinking is the
statistical incarnation of “common sense”. “We know it when we see it”, or perhaps more truthfully,
its absence is often glaringly obvious. And, for most of us, it has been much more a product of
experience, war stories and intuition than it is of any formal instruction that we have been through.



224 C.J. WILD & M. PFANNKUCH

There is a paucity of literature on statistical thinking. Moore (1997) presented the following list of
the elements of statistical thinking, as approved by the Board of the American Statistical Association
(ASA) in response to recommendations from the Joint Curriculum Committee of the ASA and the
Mathematical Association of America: the need for data; the importance of data production; the
omnipresence of variability; the measuring and modelling of variability. However, this is only a
subset of what the statisticians we have talked to understand by “statistical thinking” or “thinking
statistically”. In the quality (or more properly, process and organisational improvement) area, much
has been written, but addressing a specific audience. Snee (1990, p. 118) defined statistical thinking
as “thought processes, which recognise that variation is all around us and present in everything we
do, all work is a series of interconnected processes, and identifying, characterising, quantifying,
controlling, and reducing variation provide opportunities for improvement”. (See also Britz et al.,
1997; Mallows, 1998; and Dransfield et al. 1999).

The usual panacea for “teaching” students to think statistically is, with apologies to Marie-
Antoinette, “let them do projects”. Although this enables students to experience more of the breadth
of statistical activity, experience is not enough. The cornerstone of teaching in any area is the
development of a theoretical structure with which to make sense of experience, to learn from it and
transfer insights to others. An extensive framework of statistical models has been developed to deal
with technical aspects of the design and analysis that are applicable once the problem and variables
have been defined and the basic study design has been decided. An enormous amount of statistical
thinking must be done, however, before we ever reach this stage and in mapping between information
in data and context knowledge throughout the whole statistical process. We have little in the way
of scaffolding to support such thinking (see Mallows, 1998). Experience in the quality arena and
research in education have shown that the thinking and problem solving performance of most people
can be improved by suitable structured frameworks (Pea, 1987, p. 91; Resnick, 1989, p. 57).

The authors have begun trying to identify important elements from the rich complexity of statistical
thinking. In addition to the literature and our own experience, our discussion draws upon intensive
interviews with students of statistics and practising professional statisticians. One set of eleven
students, referred to as “students” were individually given a variety of statistically based tasks
ranging from textbook-type tasks to critiquing newspaper articles in two one hour sessions. They
were interviewed while they solved the problems or reacted to the information. Another set of five
students, referred to as “project students” were leaders of groups of students doing real projects
in organisations which involved taking a vaguely indicated problem through the statistical enquiry
cycle (see Fig. 1(a)) to a solution that could be used by the client. Each was interviewed for one
hour about their project. The six professional statisticians were interviewed for ninety minutes about
“statistical thinking” and projects they had been involved in. The “project students” and statisticians
interviews were structured around the statistical enquiry cycle and were in the form of a conversation
which reflected on their approach and thinking during the process of an investigation. This paper is
not a report on this particular research (that is being done elsewhere, e.g. Pfannkuch, 1996, 1997),
but an attempt to synthesise a more comprehensive picture from these interviews and the literature.

We are not concerned with finding some neat encapsulation of “statistical thinking”. Our concerns
are deeper than this. We are investigating the complex thought processes involved in solving real-
world problems using statistics with a view to improving such problem solving. We are thus interested
in developing a framework for thinking patterns involved in problem solving, strategies for problem
solving, and the integration of statistical elements within the problem solving. We do not address
the thinking involved in developing new statistical methodology and theory. We recognise that much
statistical thinking can beneficially take place in day-to-day activities, particularly in the interpretation
of information in media and other reports. In interpreting reports, we recognise the applicability of
parts of our statistical knowledge about the production, behaviour and analysis of data to the type of
information we are receiving and are thus able to critically appraise aspects of that information. The
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type of thinking required is very similar, if not identical, to fragments of the thinking performed by
someone involved in an enquiry. We see the enquiry cycle as providing a coherent structure that links
the fragments and, thus, as an ideal place to start. In subsequent work, we have been specialising and
further developing the ideas given here for interpreting statisticial information in reports.

This discussion is organised into a statistical thinking framework for empirical enquiry in Section
2. Section 3 explores “variation”. It looks at statistical approaches to real-world problems from the
starting point of omnipresent variation. Section 4 takes lessons learned in Section 2 and gives a
fragment of a thinking tool for improving investigative skills. Section 5 contains a discussion.

2 A Framework for Statistical Thinking in Empirical Enquiry

Applied statistics is part of the information gathering and learning process which, in an ideal world,
is undertaken to inform decisions and actions. With industry, medicine and many other sectors of
society increasingly relying on data for decision making, statistics should be an integral part of the
emerging information era. Statistical investigation is used to expand the body of “context” knowledge.
Thus, the ultimate goal of statistical investigation is learning in the context sphere. Learning is much
more than collecting information, it involves synthesising the new ideas and information with existing
ideas and information into an improved understanding.

From the interviews we have built up the four dimensional framework shown in Fig. 1 which seeks
to organise some of the elements of statistical thinking during data-based enquiry. The thinker operates
in all four dimensions at once. For example the thinker could be categorised as currently being in the
planning stage of the Investigative Cycle (Dimension 1), dealing with some aspect of variation in
Dimension 2 (Types of Thinking) by criticising a tentative plan in Dimension 3 (Interrogative Cycle)
driven by scepticism in Dimension 4 (Dispositions). Who is doing this thinking? Anyone involved
in enquiry, either individually or as a member of a team. It is not peculiar to statisticians, although
the quality of the thinking can be improved by gaining more statistical knowledge.

2.1 Dimension One: The Investigative Cycle

The first dimension in Fig. 1(a) concerns the way one acts and what one thinks about during
the course of a statistical investigation. We have adapted the PPDAC model (Problem, Plan, Data,
Analysis, Conclusions) of MacKay & Oldford (1994). The elements of this model should be self-
explanatory to statisticians. The statisticians we interviewed were particularly interested in giving
prominence to the early stages of PPDAC, namely, to grasping the dynamics of a system, problem
formulation, and planning and méasurement issues (see Pfannkuch & Wild, 1998).

A PPDAC cycle is concerned with abstracting and solving a statistical problem grounded in a
larger “real” problem. Most problems are embedded in a desire to change a “system” to improve
something. Even ostensibly curiosity-driven research is usually justified by the idea that the accrued
understanding will have long term practical benefits. A knowledge-based solution to the real problem
requires better understanding of how a system works and perhaps also how it will react to changes
to input streams, settings or environment. Certain learning goals must be met to arrive at the
desired level of understariding. A PPDAC investigative cycle is set off to achieve each learning goal.
Knowledge gained and needs identified within these cycles may initiate further investigative cycles.
The conclusions from the investigations feed into an expanded context-knowledge base which can
then inform any actions.
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2.2 Dimension Two: Types of Thinking

A number of types of thinking emerged from the statisticians’ interviews and were subsequently
refined and modified when we applied them to the student and project-student interviews. The
resulting categories are shown in Fig. 1(b). Some types of thinking were common to all problem
solving. We will relate these general types of thinking to the statistical context in Section 2.2.2. First,
however, we concentrate on types of thinking that are inherently statistical.

2.2.1 Types fundamental to statistical thinking

The types of thinking categorised under this heading in Fig. 1(b) are, we believe the foundations
on which statistical thinking rests.

Recognition of the need for data: The recognition of the inadequacies of personal experiences
and anecdotal evidence leading to a desire to base decisions on deliberately collected data is a statis-
tical impulse.

Transnumeration: The most fundamental idea in a statistical approach to learning is that of forming
and changing data representations of aspects of a system to arrive at a better understanding of that
system. We have coined the word transnumeration to refer to this idea. We define it as “numeracy
transformations made to facilitate understanding”. Transnumeration occurs when we find ways of
obtaining data (through measurement or classification) that capture meaningful elements of the real
system. It pervades all statistical data analysis, occurring every time we change our way of looking
at the data in the hope that this will convey new meaning to us. We may look through many graphical
representations to find several really informative ones. We may re-express the data via transforma-
tions and reclassifications looking for new insights. We might try a variety of statistical models. And
at the end of the process, transnumeration happens yet again when we discover data representations
that help convey our new understandings about the real system to others. Transnumeration is a
dynamic process of changing representations to engender understanding. Mallows (1998, Section 2)
would appear to be advancing a similar idea.

Variation: Thinking which is statistical, in the modern sense anyway, is concerned with learning
and decision making under uncertainty. Much of that uncertainty stems from omnipresent variation.
The ASA resolution, and Moore and Snee’s discussions of statistical thinking all emphasise the
importance of variation. The last element of the list following “variation”, namely “for the purposes
of explanation, prediction, or control” is in the original statement of Snee (1990), albeit with a
process-improvement spin, but has been dropped from the ASA statement. It is a critical omission.
We do not measure and model variation in a vacuum. The purpose influences the way in which it is
done. Our concerns with variation also extend beyond “measuring and modelling” to investigative
strategies such as randomisation and blocking. In Section 3, we consider the variation theme in much
greater detail.

A distinctive set of models: All thinking uses models. The main contribution of the discipline
of statistics to thinking has been its own distinctive set of models, or frameworks, for thinking about
certain aspects of investigation in a generic way. In particular, methods for study design and analysis
have been developed that flow from mathematical models which include random components (see
Mallows, 1998). Recently, however, there is a growing desire (enlisting a phrase from David Moore)
to nudge “statistics a little further back towards its roots in scientific inference”. Large parts of the
investigative process, such as problem analysis and measurement, have been largely abandoned by
statisticians and statistics educators to the realm of the particular, perhaps to be developed separately
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within other disciplines. However, there are more valuable generic lessons that can be uncovered
about these parts of the investigative process using other modelling tools. There is a need to expand
the reach of our statistical models.

Context knowledge, statistical knowledge and synthesis: The raw materials on which statistical
thinking works are statistical knowledge, context knowledge and the information in data. The think-
ing itself is the synthesis of these elements to produce implications, insights and conjectures. One
cannot indulge in statistical thinking without some context knowledge. The arid, context-free land-
scape on which so many examples used in statistics teaching are built ensures that large numbers of
students never even see, let alone engage in, statistical thinking. One has to bring to bear all relevant
knowledge, regardless of source, on the task in hand, and then to make connections between existing
context-knowledge and the results of analyses to arrive at meaning. Ideally, all of this knowledge
would be resident in the same brain, but this is often not possible. Major investigations are team
efforts which bring together people of differing expertise. Fig. 2 emphasises the synthesis of ideas
and information from the context area and from statistics.
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Figure 2. Interplay between context and statistics

Fig. 2(a) traces the (usual) evolution of an idea from earliest inkling through to the formulation
of a statistical question precise enough to be answered by the collection of data, and then on to
a plan of action. The earliest stages are driven almost entirely by context knowledge. Statistical
knowledge contributes more as the thinking crystallises. Fig. 2(b) illustrates the continual shuttling
backwards and forwards between thinking in the context sphere and the statistical sphere. This goes
on all the time throughout PPDAC. For example, at the analysis stage questions are suggested by
context knowledge that require consulting the data—which temporarily pushes us into the statistical
sphere—whereupon features seen in the data propel us back to the context sphere to answer the
questions, “Why is this happening?” and “What does this mean?”
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2.2.2 General types of thinking applied in a statistical context
Strategic thinking

By strategic thinking, we mean thinking aimed at deciding upon what we will do (next or further
into the future) and how we will do it. This includes such things as: planning how to attack a task;
breaking tasks down into subtasks; setting deadlines for subtasks; division of labour; and anticipating
problems and planning to avoid them. An important part of strategic thinking is having an awareness
of the constraints one is working under and taking them into account in planning.

Real statistics is less about the pursuit of the “correct” answer in some idealistic sense than about
doing the best one can within constraints. Many factors limit the quality and effectiveness of the
thinking. Some of these factors are internal to the thinker. Lack of knowledge obviously constrains
thinking. Unfortunately, what we “know” is not only our greatest asset but also our biggest curse
because the foundations of what we “know” are often not soundly based. OQur preconceptions can
lead us astray in many ways, for example, by blinding us to possibilities because what we “know”
determines where we look, and by desensitising us to important information. The challenging of
something we “know” and take for granted can remove an obstacle and lead to new insight. This often
occurs when people with different backgrounds discuss the same problem. Consulting statisticians
see it at work in their clients when a quite innocent question surprises the client, loosens a previously
held preconception, and leads to the client seeing the problem in a new way. We tend to solve problems
by following “precedents”. In applied research, this happens all the time and often the statistical
methods of the precedents are inadequate. As far as dispositions (Dimension 3) are concerned,
someone who is not curious, imaginative, sceptical and engaged will be less effective than someone
who is. There is also an ability factor operating. Faced with the same set of information, some people
will be better at making useful connections and grasping the essential features than others. And
inadequate communication skills limit the ability to extract vital information and ideas from clients
and others.

Other constraints are due to the environment the thinker is operating in. These include the general
time, money and materials constraints, the imperfection of all human communication which results
in misunderstandings and gaps in transmission of essential knowledge, and limitations of the data
available. Very often, the problem we would like to solve is simply not soluble on the basis of the
information we can get. For example, it may be impossible to capture with feasible measurement
processes the characteristics we would like to capture. It may be impossible to sample the desired
population or even a good approximation to that population, and so on.

This paragraph relates to particular constraints faced by statistical consultants, but students and
other researchers are subject to some closely related constraints. The consultant works on problems
owned by someone else. In other words, the statistician is in the position of having to satisfy
“clients”. This brings additional constraints which run deeper than time-and-materials constraints.
Major decisions are made by, or must be cleared with, the client. The problem territory tends to
be mapped out and even ring-fenced by the client. The client is often the chief source of context
information so the statistician is not only constrained by the quality of communication and the
extent of the client’s knowledge, but will also tend to take on board the client’s preconceptions. As
the client is the final arbiter, the statistician is constrained by what the client can understand and
accept. This can be strongly influenced by a number of what might be described as psychological
factors. Statisticians have to gradually build up the client’s trust in their judgement and abilities. An
important consideration in “building trust” is not taking clients too far from territory in which they
feel secure. An important element in client security is, in the words of colleague Chris Triggs, “what
has been done in the field before”. We call this the first-in-the-field effect. Early work in a field tends
to take on an authority of its own whether or not it is warranted. It can influence every decision in
the investigative process, right through to presentation. A related psychology of measurement effect
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concerns the sanctity of the measured variable. To many clients, the way in which a variable has been
measured takes on a meaningfulness and inviolability that a statistician might disregard, given the
arbitrary elements in the initial choice of the variable. (This is not universal. Some client groups such
as engineers are very sophisticated in this area.) The use of transformations in analysis is an area in
which these issues come into sharp focus. Pfannkuch & Wild (1998) give a much more detailed and
wide-ranging discussion, derived from the statisticians’ interviews, of the realities of working with
clients.

Modelling

Constructing models and using them to understand and predict the behaviour of aspects of the world
that concern us seems to be a completely general way of thinking. All models are oversimplifications
of reality in which information is necessarily discarded. We hope that we have caught the essential
features of a situation and the loss of information does not invalidate our conclusions. Fig. 3
illustrates the way in which we learn about the context reality as a statistical investigation proceeds.
As our initial quotation from David Bartholomew makes clear, “understanding” builds up in mental
models of the context reality. These models are informed by information from the context reality,
e.g. incorporating “expert knowledge”. In an ideal world, we would be continually checking the
adequacy of the mapping between model and reality by “interrogating” the context reality. Some
of the information we seek and get from the context reality is statistical data. We build statistical
models to gain insights from this information (“interpret”) which feed back into the mental model.
“Statistical models” here is more general than something like logistic regression. It refers to all of
our statistical conceptions of the problem that influence how we collect data about the system and
analyse it. Fig. 3 also incorporates the role of statistical knowledge and experience. Most obviously,
it is a major determinant of the statistical conceptions we form in order to obtain and analyse data.
Additionally, depending on the problem and the education and experience of the thinker, statistical
elements can also be part of the way we think about the world and thus be integral parts of our mental
models of the context reality.
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Applying techniques

A basic problem solving technique in the mathematical sciences is to find a way of mapping a
new problem onto a problem that has already been solved so that the previously devised solution
can be applied or adapted. The whole discipline of statistics is itself a manifestation of this strategy.
Statistical theory makes the mapping process efficient by creating problem archetypes and linking
them to methods of solution. To use statistics, we first recognise elements of our context that can
be usefully mapped onto a model (a process of abstraction from the particular to the generic),
operate within that model, and then we map the results back to context (from the generic to the
particular). (Additionally, applied statisticians are always borrowing problem-solving ideas from
previous experience with other problems and other data sets.)

Implementation of the problem-archetype strategy, and indeed the practical application of any
technique, algorithm or concept, involves the three steps shown in Fig. 4. Instruction tends to focus
on step 2, mechanical application. However, steps 1 (recognition) and 3 (interpretation in context)
are: first, vital to step 2 having any utility, and second, inordinately more difficult. This is particularly
true for the recognition step. (The project students needed to make constant external checks with
their supervisor about whether they were on the right track.) One can deal with the mechanics of
procedures by simply talking about them, establishing them with a few exercises and then moving
on. Synthesis, insight, critical thinking and interpretation happen in the realm of the particular and
require exposure to large numbers of disparate situations (cf. Wild, 1994).

Interpret Recognise
result applicability

Apply
method

Figure 4. Using any technique

It is characteristic of statistics that we apply relatively sophisticated statistical models to the
analysis of data and experimental design. Of all our statisticians, however, only the one operating
in quality improvement seemed to use tools (e.g. cause-and-effect diagrams and process-mapping
techniques) to analyse the nature of the problem itself. For the others, it seemed to be a process of
imaginative construction of a mental model of the system, without discernible organisation. (The type
of thinking “seeking explanations” has not been discussed in this section, but will be an important
theme in Section 3.)

2.3 Dimension Three: The Interrogative Cycle

The Interrogative Cycle illustrated in Fig. 1(c) is a generic thinking process in constant use in
statistical problem solving. From a detailed analysis of the project-students’ and students’ transcripts,
it appears that the thinker is always in one of the interrogative states while problem solving. The
cycle applies at macro levels, but also at very detailed levels of thinking because the interrogative
cycle is recursive. Subcycles are initiated within major cycles, e.g. the “checking” step of any cycle
can initiate a full interrogative subcycle. The ordered depiction on a wheel is an idealisation of
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what perhaps should happen. In reality steps are often missed. We discuss the Interrogative Cycle as
we observed it, being applied to statistical enquiry and statistical critique. The “thinker” is anyone
involved in these activities. We now explore the components in more detail.

Generate: By this we mean imagining and brainstorming to generate possibilities, as an individual or
in a group. We might be applying this to a search for possible causes, explanations and mechanisms,
to the ways parts of a system might interrelate and to other building blocks of mental and statistical
models. We might be applying it to the types of information we need to seek out to fill an information
gap or to check out an idea, or to plan an approach to a problem or subproblem. The generation
of possibilities may be from the context, the data or statistical knowledge and apply to the present
problem, or may be registered for future investigation (hypothesis generation).

Seek: Generation tends to be followed by a seeking or recalling of information. This may be
internal or external. For internal seeking, we observe people thinking “I know something about this”
and digging in their memories for the relevant knowledge. External seeking consists of obtaining
information and ideas from sources outside the individual or team. Working statisticians talk to other
people about their problems—clients, colleagues, context-matter experts, people “working in the
system”. Seeking includes reading relevant literature. At the macro level it includes the collecting of
statistical data, while at a more detailed level it includes querying the data in hand.

Interpret: By this we mean taking and processing the results of our seeking.

Read/see/hear —> Translate —> Internally summarise —> Compare —> Connect

This process applies to all forms of information including graphs, summaries and other products of
statistical analysis. “Connect”, the endpoint of “interpret” refers the interconnecting of the new ideas
and information with our existing mental models and enlarging our mental models to encompass
these interrelationships. Some of the problems observed in student thinking involved making one
connection and then rushing to “judge” rather than trying to make multiple connections or going
through the criticism phase.

Criticise: The criticism phase applied to incoming information and ideas involves checking for
internal consistency and against reference points. We ask, “Is this right?” “Does this make sense?”
“Does this accord with what else I or others know?” We check against internal reference points—
arguing with ourselves, weighing up against our context knowledge, against our statistical knowledge,
against the constraints we are working under, and we anticipate problems that are consequences of
particular choices. We may also check against external reference points such as: other people (i.e. talk
to clients, colleagues, experts, “workers in the system”); available literature and other data sources
(e.g. historical data).

We can similarly try to take a mental step back and monitor our own thinking. Educational
theorists talk about metacognition, of recognising and regulating one’s normal modes of thought
(see Shaughnessy, 1992). Reference points to check against here include the following: (1) The
purpose of the thinking: for example, “Does this address the question the client wants answered?”,
or some sort of agreed objectives. (2) Belief systems: “Am I being unduly guided by unwarranted
preconceptions—my own, my client’s, or my community’s?” Pfannkuch & Wild (1998) have some
good cautionary tales from the experiences of our statisticians. (3) Emotional responses: One of our
project students was worried about how the company’s treatment of her seemed to be influencing the
way she was approaching the problem and viewing the data.

Judge: This is the decision endpoint of criticism. What we keep, what we discard or ignore, what
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we continue to tentatively entertain, what we now believe. We apply judgement to such things as:
the reliability of information; the usefulness of ideas; the practicality of plans; the “rightness” of
encapsulation; conformance with both context-matter and statistical understanding; the relative plau-
sibility of competing explanations; the most likely of a set of possible scenarios; the need for more
research; and the many other decisions involved in building and reasoning from models.

The result of engaging in the interrogative process is a distilling and encapsulating of both
ideas and information. Internal interrogative cycles help us extract essence from inputs, discarding
distractions and detail along the way (Fig. 5).
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2.4 Dimension Four: Dispositions

In this subsection, we discuss personal qualities categorised in Fig. 1(d) which affect, or even
initiate, entry into a thinking mode. The nature of these dispositions emerged from the statisticians’
interviews and we could subsequently recognise them at work in the students. We think these el-
ements are generic, but again we discuss them as we observed them—in the context of statistical
problem solving.

Curiosity and Awareness: Discoveries are triggered by someone noticing something and reacting to
internal questions like “Why?”, or “How did that happen?”, or “Is this something that happens more
generally?”, or “How can I exploit this?”” Being observant (aware) and curious are the well-springs
of the question generation process that all innovative learning results from. Wild (1994) formed
the slogan “Questions are more important than answers” to emphasise this point. Statistician Peter
Mullins stressed the importance of “noticing variation and wondering why” for generating ideas
for improving processes and service provision. We hazard that this very basic element of statistical
thinking is actually at the root of most scientific research. “Noticing and asking why” is also critical
for successful data exploration and analysis.

This brings us to engagement. When the authors become intensely interested in a problem or
area, a heightened sensitivity and awareness develops towards information on the peripheries of our
experience that might be related to the problem. We suggest that this experience is fairly general.
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People are most observant in those areas that they find most interesting. Engagement intensifies
each of the “dispositional” elements curiosity, awareness, imagination and perseverance. How do
we become engaged? Spontaneous interest is innate. Background knowledge helps—it is hard to be
interested in something one knows nothing about. Being paid to do a job helps, as does the problem
being important to people we care about. This may be our main difficulty in getting statistics students
to think. They simply do not find the problems they are asked to think about interesting enough to
be really engaged by them. We observed the effects on performance of engagement with some tasks
and not others in the statistics students.

Imagination: 1t is hard to overemphasise the importance of imagination to statistical thinking.
This is somewhat ironic given popular stereotypes of statisticians. The formation of mental models
that grasp the essential dynamics of a problem is a deeply imaginative process, as is viewing a situa-
tion from different perspectives, and generating possible explanations or confounding explanations
for phenomena and features of data.

Scepticism: By scepticism, we mean a tendency to be constantly on the lookout for logical and
factual flaws when receiving new ideas and information. It is a quality all our statisticians both
possess and value. Some writers refer to this as “adopting a critical attitude”. Gal et al. (1995)
and Pfannkuch (1996) discussed critical thinking in the interpretation of statistically based reports
and media articles. Scepticism here was basically targeted towards, “Are the conclusions reached
justified?” There may be worries about the motivation, predispositions and objectiveness of the
writer which would effect the level of trust in anything that had been done. Experienced statisticians
are likely to evoke automatically technical “worry questions” concerning the appropriateness of the
measurements taken, the appropriateness of the study design, the quality of the data, the suitability
of the method of analysis, and whether the conclusions are really supported by the data. Postulated
explanations create worries about whether this really is the only plausible explanation.

Another aspect involves a sense of number and scepticism. A precursor step towards “Is this
information/conclusion justified?” is “Is this information/conclusion even credible?” One of our
statisticians told the simple story of reported attendance rates at a free outdoor concert in Auckland.
If the figures were correct, that would mean that one in every three Aucklanders, one in nine New
Zealanders, would have needed to have attended and that was, frankly, incredible. The information is
discounted at this first hurdle. However it should be noted that one is much less inclined to be scepti-
cal when conclusions fit one’s own preconceptions. A conscious effort may be required to counter this.

Being logical: The ability to detect when one idea follows from another and when it does not,
and to construct a logical argument is clearly important to all thinking. Synthesis of new information
with existing knowledge is largely a matter of seeing implications. Logical reasoning is the only sure
way to arrive at valid conclusions. To be useful, scepticism must be supported by an ability to reason
from assumptions or information to implications that can be checked against data.

A propensity to seek deeper meaning means not simply taking things at face value and being
prepared to dig a little deeper. Of the other “dispositions”, openness helps us to register and consider
new ideas and information that conflict with our own assumptions and perseverance is self evident.

Can “‘dispositions” be taught?

Schoenfeld (1983) analysed the mathematical problem solving experience within individuals in
terms of a “manager” and an “implementer” working in tandem. The manager continually asks
questions of a strategic and tactical nature deciding at branch points such things as which perspective
to adopt and which direction to take or abandon. We have described the characteristics above as
“dispositions”. They tend to initiate manager functions. We first thought of the dispositions as innate
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characteristics of the thinker but had to modify this with the idea of “engagement”. A person’s
“dispositions” are problem dependent—they change according to the degree to which the person is
engaged by the problem. One of our statisticians was adamant that some people are sceptical, others
are credulous, and there is little one can do about it. The authors are less pessimistic. It seems to us
that credulousness in a particular area is a result of ignorance. As you gain experience and see ways
in which certain types of information can be unsoundly based and turn out to be false, you become
more sceptical. Moreover, all we want in operational terms from scepticism is a prompting to raise
certain types of “worry” question [cf. Gal et al.’s (1995)] concerning the reliability of information,
which can be taught (see Section 4).

3 Variation, Randomness and Statistical Models
3.1 Variation as the Starting Point

The centrepiece of the quality and ASA definitions of statistical thinking is “variation” or *“vari-
ability”. Any serious discussion of statistical thinking must examine the role of “variation”. The
“variation” terminology and message seem to have arisen in one small area of statistical application,
namely that of quality, and their penetration into other areas would appear to be slight. If “variation”
(as a major source of uncerainty) is indeed to be the standard about which the statistical troops are
to rally, we need to arrive at a common conception of statistics in terms of “variation”. This section
attempts such a conception. Moreover, we are striving for a view of statistics “from the outside”.

The first three “variation” messages are: variation is omnipresent; variation can have serious
practical consequences; and statistics give us a means of understanding a variation-beset world.
Subsequent messages concern how statistics goes about doing that.

Omnipresence: Variation is an observable reality. It is present everywhere and in everything.
Variability affects all aspects of life and everything we observe. No two manufactured items are
identical, no two organisms are identical or react in identical ways. In fact, individual organisms are
actually systems in constant flux. The aforementioned refers only to real variation inherent in the
system. Fig. 6 depicts how, when we collect data from a system, this real variation is supplemented
by variation added in various ways by the data collection process.

REAL
(Characteristic
of system)
VARIATION
oo —

INDUCED -
‘\ (by data *—{ “Sampling” I
collection) 2 Collection

Processing

Figure 6. Sources of variation in data

Practical impact: Having established that variation is everywhere, we have then to demonstrate
the important practical impacts of this variation on peoples’ lives and the way they do business. It
is variation that makes the results of actions unpredictable, that makes questions of cause and effect
difficult to resolve, that makes it hard to uncover mechanisms. Variation is the reason why people
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have had to develop sophisticated statistical methods to filter out any messages in data from the
surrounding noise.

3.2 Predict, Explain and Control

Fig. 7 categorises rational responses to variation in a system in the world of action. This is idealistic.
The way people actually do react to variation can be quite another story! (See Joiner, 1994, Chapter
10).

Ignore Allow for Change Pattern
(*Control”)
Anticipate Change system/
Design systems/ process to increase
processes/products “desirable” outcomes

to be insensitive to

Figure 7.

First, we can pretend that the variation does not exist, e.g. behave as though every object or
organism is the same or differs in some deterministically known way. In some circumstances this
works admirably. If it did not we would have to write off all of applied mathematics and every field
it fertilises. Second, we can investigate the existing pattern of variation and come up with ways of
working around it as in our system of clothing and shoe sizes. Variation is allowed for at the design
stage in quality management approaches to manufacturing where one wishes to design a product that
is “rugged” or “robust” to the variability of uses to which it will be put and conditions to which it
will be subjected. Third, we can try to change the pattern of variation to something more desirable,
e.g. to increase average crop yield or reduce a death rate. We do this by isolating manipulable causes,
or by applying external treatments. The former approach is often used in quality improvement or in
public health, the latter is frequently used in agriculture or in medical research aimed at the treatment
of individual patients.

Statisticians model variation for the purposes of prediction, explanation, or control. Control is
changing the pattern of variation to something more desirable. Prediction is the crucial informational
input to “Allow for” in Fig. 7. Explanation, gaining some level of understanding of why different
units respond differently, improves our ability to make good predictions and it is necessary for
control. Causal and mechanistic explanation is the goal of basic (as opposed to applied) science. As
soon as we ask “Why?”, we are looking for causes. While on the one hand variation may obscure, it
is the uncontrolled variation in a system that typically enables us to uncover causes. We do this by
looking for patterns in the variation. Fig. 8 picks up this idea in a way that relates back to the goals
in Fig. 7.

Statisticians look for sources of variability by looking for patterns and relationships between
variables (“regularities”). If none are found, the best one can do is estimate the extent of variability
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and work around it. Regularities may or may not correspond to causes. In terms of solving practical
problems, causes that cannot be manipulated are operationally equivalent to any other observed
regularity, although they will give us more confidence in our predictions. The presence of regularities
enables us to come up with predictions and measures of variability that are more locally relevant,
e.g. more relevant to an individual patient. Manipulable causes open the option of control.

Look for regularities
/ N
Some None
Yes No
IYes No‘
Change system React to existing variability] | React to existing variability
« Imprové pattern ¢ Local estimates ¢ Global estimates
of response ¢ Improved prediction ¢ Bad prediction
for individuals for individuals
Figure 8.

3.3 The Quest for Causes

In our research, two groups of first-year students were given media clippings and similar items
containing statistical information, and then interviewed individually about their responses. Initially,
our approach to the student transcripts was that of teachers marking term papers, of looking for
mistakes and gaps, for what the students had “done wrong”. One item was based on Tversky &
Gilovich (1989). The streaks that sports fans see in sports data, and then proffer all sorts of causal
explanations for (e.g. falters under pressure), can often be explained entirely in terms of a random,
e.g. binomial, model (see also Moore, 1990; Falk & Konold, 1992; Biehler, 1994 presents other
perspectives). The item run concerned a basketball player with a 70% success rate of free throws
succeeding with only 2 out of 5 throws. Under a binomial model, this is not a particularly unusual
event. We think of this as “the statistics teachers’ point”. Our students proffered all sorts of causal
explanations. As statistics teachers, we thought they had missed the point. Mark that one wrong!
For the next group, we loaded the item entirely in favour of the statistics teacher’s point: “The team
manager attributed her performance to normal variation, that she scored 70% in the long run and
that 70% was only an average so that you had to expect some low scores now and again.” Even
then we saw the tip of the deterministic-causal-thinking iceberg. One student said, “the manager’s
comments are OK if that is the way he wants to look at the score and not on ‘we want to win’ ” and
then he gave possible causes.

This comment eventually overturned our attitude. The student was right. There is a real problem
underlying this item. Coaches and managers of sports teams are seeking to learn from their observa-
tions so that they can work on improving player skills and strategy, and better deploy their pool of
available players. A random model is of no help at all in this regard. The statistics teacher’s concerns
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do not replace the need to search for causes and predictors of good and bad performance. It is that
search that is of primary importance.

The real problem underlying the statistical problem very often involves searching for and isolating
causes of some response. We have run a variety of stories including medical stories and prison
suicides. Whenever students have contextual knowledge about a situation, and their experience has
given them some notion of the nature of the real problem, they will come up with a range of possible
causal explanations with little or no prompting. This appears to be a well developed impulse that has
not been explicitly taught. It is a first and direct step towards solving the primary problem. The real
purpose of many of the new statistical ideas we teach is simply to moderate the search for causes by
preventing a premature jumping to conclusions—“Hey, not so fast . ..."” This role is secondary and
subtle. It is probably not surprising then, that even after some statistical instruction, the randomness
ideas are much weaker in students than the impulse to postulate causes. Probabilistic thinking is not
so much an alternative to deterministic thinking, as some statistics educators (Shaughnessy, 1992)
and statisticians (Hoerl et al., 1997) have suggested, but something to be grafted on top of the natural
thinking modes that directly address the primary problem. As an interesting aside, if an explanation
or cause has already been suggested to students for a particular set of data or if the data has been
presented stratified in some particular way, it can take a great deal of prompting for the student to
go beyond the explanation given, to think that there may be other explanations and start coming up
with ideas. This latter is a quite different incarnation of “Hey, not so fast, ....”

What does statistics education have to say about causation? By far the loudest message is, “corre-
lation is not causation”. This is the statistician as Cassandra, the harbinger of doom saying “this way
lies disaster”. True, we usually go on to make the important point that the randomised experiment
is the most convincing way of establishing that a mooted relationship is causal. But, as stressed by
Holland (1986), Cox (1992) and few others outside of quality and epidemiology, this greatly under-
sells the true importance of the search for causes. Solving most practical problems involves finding
and calibrating change agents. Statistics education should really be telling students something every
scientist knows, “The quest for causes is the most important game in town”. It should be saying,
‘“Here is how statistics helps you in that quest. Here are some general strategies and some pitfalls
to beware of along the way ...... ”. 1t should not just be preventing people from jumping to false
conclusions but also be guiding them towards valid, useable conclusions—replacing Cassandra by a
favourite literary detective.

Thinking about causes

It is ironic that the uncontrolled variability in a system provides us with the best opportunities to do
the detective work that uncovers causes. By checking for relationships between upstream variables
and downstream responses, we can identify possible causal factors. Observation precedes experi-
mentation. All ideas for possible causal relationships originate in observation, whether anecdotal
or from formal studies. And as we continually stress, randomised experiments provide the most
convincing way of confirming or refuting the causal nature of an observed relationship.

Conducting any sort of study to detect causes and estimate their effects proceeds from ideas about
profitable places to look, ideas which draw almost exclusively on context-matter knowledge and
intuition. Ideas about possible causes and other factors that might be important predictors of the
behaviour of the response are translated into a set of variables to measure (transnumeration) and data
is collected to facilitate investigation of relationships between measured variables and the responses
of interest. The primary tools of analysis in the search for causes are models of the regression type, i.e.
models for exploring how Y-behaviour changes with changes in X-behaviour. (The humble scatter
plot falls into this class.)

Cox (1992) distinguishes between: response variables (those whose behaviour we want to find
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causal explanations for); intermediate response variables (which measure intermediate effects that
happen along the way from initial state to response state) and explanatory variables (those we want to
use to explain or predict the behaviour of the response). Explanatory variables are further categorised
into possibly causal variables, intrinsic properties of entities under study, and non-specific (e.g.,
different countries). Intrinsic variables are those whose values cannot be manipulated. Intrinsic
variables are often included to improve our ability to detect relationships, improve the precision of
estimation of effects and to explore how a cause may act differently for different types of entity
(interactions). Detection of strong relationships between non-specific variables and a response lead
to a search for new explanatory variables, variables associated with the non-specific variable which
could conceivably explain the response. For example, when disease rates differ greatly between
countries, we start looking among factors that differ between the countries as possible causes. We
note that the above distinctions between variables are much more than distinctions for analysis. As a
set they constitute a general thinking tool which adds clarity to the way in which the context-matter
problem is conceived. They are an example of the way in which statistical knowledge or training
can feed into a core mental model of the context reality that is understandable by statisticians and
non-statisticians alike, the “inform” arrow linking statistical knowledge and mental model in Fig. 3.

Some consequences of complexity

Most real systems are enormously complex with variation in innumerable components, each of
which could contribute to the response of interest. We are incapable of handling such complexity and
need strategies to “sift” the large numbers of possibilities for a much smaller number of promising
leads. The quality control distinction between special cause and common cause variation can be
seen in this light. It gives a means of distinguishing situations (special-cause variation) in which
the seemingly instinctive human reaction of looking around for something unusual occurring in the
system just prior to the problem event is likely to be a profitable strategy for locating the cause, from
situations (common-cause variation) in which this strategy is unlikely to be profitable and may even
be harmful.

The main statistical “sifting”-strategy is to restrict attention to variables which have strong asso-
ciations with the response of interest. We have no hope of identifying a cause and characterising its
effects if it acts in complexly different ways for different individuals or at different times. The only
causes that we can hope to find are those that act in a reasonably uniform or regular way. Moreover,
we will only detect the existence of a cause if we think of some way of looking at the situation
that will reveal that regularity (transnumeration). There must be sufficient “natural variability” in
a cause-variable in the system for the effect of this variability on the response to be seen. Causal
variables that we miss using the above strategy are unlikely to be good agents for making substantial
changes unless settings are used that lie far beyond the range of variability seen in that variable in
the data.

From association to causation

It is at this point that Cassandra makes her entrance. And the world really does need her warnings.
It is clear that people do jump far too quickly to causal conclusions. But “correlation is not causation”
is simply a “Hey, not so fast” warning and we need to supply ways of moving on from there. The
search process has not given us a set of causes. It has only given us a set of promising contenders
for causal status. Our main worry at this point stems from the fact that we have not considered the
universe of relevant variables, but just that subset that happened to come to mind. We are worried
that other unconsidered factors, those sinister lurking variables of textbook fame, may be producing
the relationships we are seeing. Thus, we challenge the causal assumption, whether our own or
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somebody else’s. We rack our brains for other possible explanations and for strategies for testing
these explanations. This behaviour has to be learned. It comes naturally to very few students. The
goal of the scientist is to reach a position at which there are no other plausible explanations at the
current level of understanding. To do this, we need strategies which use observation, experimentation
and analysis to discount all other plausible alternatives.

Where experimentation is not possible and one must make decisions based upon using observa-
tional studies, there is a range of ideas about what strengthens the impression that a causal contender
is in fact a cause. The criteria of A.B. Hill (1965, see also Gail, 1996) are a good starting point. In
epidemiology and quality, the finding of causes with a view to improving systems is not a philosoph-
ical problem but a pressing practical imperative. Substantial literatures have grown up in these fields.
Cox (1992, 1993) and Holland (1986) also view questions of causation with practical applications
clearly in mind. In view of the fundamental importance of the search for causes, there is a real need
to synthesise this material into accounts which are more accessible for practising investigators and
for teachers.

Levels of “causal proof”

Decisions to take action tend to be made on the basis of a “best guess” in the light of the
available information. They seldom wait for incontrovertible evidence of causality. The results can
be spectacularly good. Take cot death in New Zealand. Research showed strong relationships between
cot-death rates and certain behaviours, e.g. the way the baby was put down to sleep. There was no
incontrovertible proof that the behaviours caused cot death but the idea was sufficiently plausible to
mount publicity campaigns and the advice given to new mothers by doctors. Cot death rates halved.
There is a level of assurance at which decision makers are prepared to take what they consider to be
a small chance and take action. There are many factors affecting this level of assurance. The degree
of causal proof it takes will probably depend on many factors including the difficulty of making
(and reversing) changes to the system, the consequences of making a wrong call, and the number of
people who must be convinced before action is taken. We are all brought up on the smoking-cancer
debate as the primary example of the difficulties in establishing causality. In that debate, there were
(and are) entrenched and powerful vested interests with a high political profile. Not surprisingly, the
level of proof required in such circumstances is extremely high. An industrial production manager
would have made the call long before, with the greater attendant risk of getting it wrong.

3.4 Modelling Variation

A number of statisticians have told us that the biggest contribution of statistics is the isolation
and modelling of “signal” in the presence of “noise”. The base problem with statistical data, is how
to make some sort of sense of information that is, if one considers the details, of mind-boggling
complexity. The main statistical approach to solving this problem begins by trying to find patterns
in that data. Context knowledge may give us some ideas about where to look and what to expect.
Statistical methodology gives us tools to use in the search. Common experience tells us that studies
conducted under very similar conditions always give results which are different in detail, if not in
broad thrust—patterns seen in data from one study are never repeated identically in another. The
base problem, then, is to come up with strategies for separating phenomena which are “likely”
to persist more generally from those that are purely local, to sift the enduring from the ephemeral.
Patterns which persist provide the basis for forecasting, control and insight. Statisticians have evolved
particular sets of strategies for ““solving” this problem—strategies based, in the main, on probabilistic
modelling. We often say that an important function of probability models and statistical inference is
to counteract a human tendency to “see” patterns where none exist. As statistician (and also zoologist)
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Brian McArdle put it so vividly in a personal interview, “The human being is hard-wired to see a
pattern even if it isn’t there. It’s a survivor trait. It lets us see the tiger in the reeds. And the downside
of that is that our children see tigers in the shadows on the wall.” 1t is not entirely true that no patterns
appear in purely random phenomena. These patterns are real to the brain in the sense that we can
recognise features that would help us reproduce them. However, such patterns are (i) ephemeral,
and (ii) tell us nothing useful about the problem under study. In other words, they are meaningless.
Part of our reasoning from random models is to say that we will not classify any data-behaviour
as “enduring” if it closely resembles something that would happen reasonably frequently under a
purely random model.

The distinction between “‘explained” and “unexplained” variation is important here. We generally
try to find meaning in explained variation, the patterns which we have not discounted as ephemeral,
the “signal”. Unexplained variation, or “noise”, is what is left over once we have “removed” all the
patterns. It is thus, by definition, variation in which we can find no patterns. We model unexplained
variation as being generated by a (structureless) random process. We have no idea whether this vari-
ation really is random; this is not something that bothers us. If random sampling really has occurred,
there is an element of randomness in the noise. However, measurement error and components of
the variation in the original process typically contribute to the unexplained variation and there is no
way of knowing whether these behave randomly or not. In fact, randomness is just a set of ideas, an
abstract model, a human invention which we use to model variation in which we can see no pattern.
The very physical models we use to illustrate randomness are, with sufficient knowledge, actually
deterministic (see Stewart, 1989, Chapter 14). It is all part of an attempt to deal with complexity that
is otherwise overwhelming, and it tends to be a model-element of last resort. The level at which we
impose randomness in a model is the level at which we give up on the ability to ask certain types of
question, questions related to meaning and causation.

Language such as “real or random” or referring to the possibility that “the observed difference
is due to chance” actively obscure the distinction between the underlying problem and a statistical
approach to its solution. In talking about a project he did on mangroves one student said “My
-teacher explained it [t-test] to me that the results I got were due to chance. [ still don’t think that
statement makes any sense. I can understand what chance is when you are rolling a dice. I don’t
really understand what chance is when you relate it to biological data. Everything you could possibly
measure is going to be due to some environmental impact.”

Some writers in quality have taken to saying, “all variation is caused”; e.g. Joiner & Gaudard
(1990), Pyzdek (1990). The latter repudiates the “outdated belief that chance causes should be left to
chance”. These claims seem to be predominantly motivated by concerns about human psychology.
Tomorrow, with new information, insight or technology, we may be able to find patterns in what today
looks random, to trace causes from those patterns, and to improve the system (Pyzdek gives examples
where this has occurred). The propensity to do so may well be lost if the idea is internalised that this
variation is “just random”. In commenting on the difficulties people have with coming to grips with
statistics, Shaughnessy (1992) wrote “the real world for many people is a world of deterministic
causes . .. there is no such thing as variability for them because they do not believe in random events
or chance.” We do not need to ask them to. Variability is a demonstrable reality. Randomness need
not relate to any belief system about the true underlying nature of reality. It is simply a response to
complexity that otherwise overwhelms us. The unexplained variation may well be the result of *“a
multiplicity of causes”, to use the phrase of Falk & Konold (1992). Few would dispute that much
unexplained variability is of this type. But, the statistical response is that if we can see no structure
there, we will model it as having been generated randomly.

From these models, we make inferences. We assume that the data has been randomly generated
according to the model and use probability as the link between population/process and data. This is
the very heart of the statistics we teach. Our models, including their random components, stand or
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fall on the practical usefulness of the answers they produce. There are some clear success stories,
e.g. the insurance industry. To use models with random components, we have to be able to: first,
recognise that such models provide a useful framework for considering the problem; second, build
and fit an appropriate model; and third, deduce implications from that model. The third step involves
some understanding of how random models behave. There is an emerging literature on the difficulties
in gaining that understanding; see, for example, Pfannkuch & Brown (1996), Garfield & Ahlgren
(1988), Konold (1994). Our inferential paradigms are also subtle and difficult to grasp, but we will
not discuss that here (see Mallows 1998, Section 7; and Cox, 1997, Section 5).

One of the stories we have been showing students, and our reaction to it, niggled at us for a long
time. It was a news story about an apparent jump in prison suicides, the sort that leads to accusatory
finger pointing and the pushing of different causal explanations by different sectional interests. We
automatically did a quick check against Poisson variation. The figure was within reasonable limits.
We sensed a tendency, as a consequence of this calculation, not just to disregard the hype, but to
disregard the problem. However, prison suicides are an important problem and people should be
looking for causes. It took a long time to realise that what the lack of significance really tells us is
to adopt the common-cause-variation strategy of in-depth study rather than the (popular) special-
cause-variation strategy of looking among recent changes for a cause.

Relating the “variation” words

We conclude this section by putting some summarising organisation into the “variation” termi-
nology. Special-cause versus common-cause variation is a distinction which is useful when looking
for causes, whereas explained versus unexplained variation is a distinction which is useful when
exploring data and building a model for them. An understanding of variation in data could be built
on these suppositions: (1) variation is an observable reality; (2) some variation can be explained; (3)
other variation cannot be explained on current knowledge; (4) random variation is the way in which
statisticians model unexplained variation; (5) this unexplained variation may in part or in whole be
produced by the process of observation through random sampling; (6) randomness is a convenient
human construct which is used to deal with variation in which patterns cannot be detected.

4 Thinking Tools

Gal et al. (1995) used the term “worry questions” when discussing the critical appraisal of reports—
questions to invoke worries about the way information had been obtained and how inferences had
been drawn from it. Trigger questions (e.g. “Why?” and “How?”) are their creative cousins. They
tend to initiate new thinking in certain directions. We will use the term “trigger question” for both
roles. Such questions can be very effective. Many times in our interviews when no thinking was
taking place, some small prompt opened flood gates of thought.

Experienced statisticians working in a collaborative or consulting environment learn to generate
trigger questions which elicit pertinent context information, ideas and explanatory inferences from
clients. The success of the dialogue between statistician and client may depend upon the quality
of the trigger questions. No one taught our statistical consultants to ask the questions they do. Our
consultants’ statistics education had relied on the process: stimulus + experience + disposition
—> pertinent trigger questions —> gaining critical ideas and knowledge about the context. This
completely unstructured approach puts an enormous premium on experience. If statistical thinking
is something that we teach rather than something simply to be absorbed by osmosis, then we have to
give it structure. Structure can stimulate thinking, prevent crucial areas from being overlooked, and
provide something to fall back on when you hit a brick wall.

The idea from the quality armory that we have found most powerful is the simple idea of intercon-
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nected processes, with associated process diagrams, as a framework for analysing problems. It gives
a structured way of breaking down activities, or mental processes, into components. It emphasises
principal steps and their interrelationships and hides detail which can be uncovered subsequently
when analysed as (sub)processes. Joiner’s 7-Step Process (see Joiner 1994) is a thinking tool for
working through for a quality improvement project. It leads the thinker through the steps of a project
in time order and, within each step, gives lists of questions to prompt the crucial types of thinking that
should occur there. The above approach is not new. Polya (1945) used it in How fo Solve It, the most
famous of all works on mathematical problem solving. In the quality arena, we see many serious
attempts to capture essential elements of expert experience through creating thinking models/tools
which can be used to approach specific types of problem. Underlying all of the above are two simple
principles, which we have combined to form systemise what you can, stimulate what you cannot.

Schoenfeld (1987) distinguishes between a description which characterises a procedure and a
prescription which characterises a procedure in sufficient detail to serve as a guide for implementing
the strategy. PPDAC is a high-level description of a systematic approach to investigation. It identifies
major elements. It can be used as the foundation for something that is much more of a prescription.
This is a huge undertaking so what is presented here is merely indicative. The principles involved in
our model fragments (Figs. 9 and 10) are:

Systemise what you can, stimulate what you cannot.

Use trigger questions to do the stimulation.

Work from overviews and zoom in for the next level of detail.

Keep the number of steps in any view of the process small to emphasise the most important
relationships.

At any level, one drills down for more detail by clicking on a node in the process diagram (e.g.
in an internet-type application). The area we have applied this to (in Figs. 9 and 10), is drilling
down into the “Plan” node of PPDAC and then further down again into the “Measurement” node
of the model of “Plan”. We stopped at this level of detail and used sets of trigger questions about
measurement (derived from the interviews) which are very general. Context-matter disciplines have
built up enormous amounts of expertise about how to measure the things that are of great importance
for research in their discipline. We have simply pointed to that with our questions. Models targeted at
a particular application area could build in much more of that local expertise. Still, a general model
such as ours could be useful for someone doing applied research in a less developed area, and for
building in statistics students a more holistic feel for statistical investigation and the broad issues
that need to be addressed. It prepackages some of the “strategic thinking” of breaking major tasks
down into subtasks.

An attractive model element that we have not incorporated here, though it might be useful to
do so, are lists of the tools that are helpful at particular nodes of a process. For examples, see
Hoerl & Snee (1995). Process analysis tools provide us with a means of building up new bodies
of “statistical theory” addressing critically important areas of the statistical process that statistics
teachers are currently rather silent about. The results will be oversimplifications and sometimes gross
oversimplifications, but then so are all our mathematical models. The theories should give students
two opportunities to learn about and make sense of the statistical endeavour. First, the theory provides
ascaffolding to use in forming a picture of some very complex processes. Second, once such a picture
has been established, a more sophisticated understanding can be gained by considering ways in which
the models are inadequate.

We conclude this subsection with a story related to us by some project students in a quality
improvement course that sheds light on the complementary roles of theory and experience. The
students first learnt some theory about quality improvement (including the role of statistical tools)
via lectures and readings and found it all rather abstract and meaningless. On their first practical
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project they floundered. The theory did not seem to help. But from those experiences the theory
started to make sense. And by the second project it had started to work for them—its value had
become obvious.

What information is .—-.l_ Measurement |
already available?  What fo measure and
how to measure it
A J | “Sampling” Design |
Plan Collection o What units to take measurements on
of new data — sampling and exptal design issues
—l Data Collection Process l
y
Plan analysis
and reporting —— Dan Management |
Y
Piloting and
adjustment

Figure 9. Drilling down into the “Plan” node of PPDAC

5 Discussion

The ultimate aim of statistical investigation is learning in the context domain of a real problem.
Learning consists of the construction of mental models of the system under study. Statistics is itself
a collection of abstract models (“models” is used in a very broad sense) which permit an efficient
implementation of the use of archetypes as a method of problem solution. One abstracts pertinent
elements of the problem context that map onto a relevant archetypical problem type, uses what has
been worked out about solving such problems, and maps the answers back to context domain. There
is a continual shuttling between the two domains and it is in this shuttling or interplay, that statistical
thinking takes place—where the statistical rubber meets the real-world road. When it works, we gain
real traction. Our abstraction processes bring clarity to thinking and efficiency to problem solving.
However, when we use archetypes to solve problems, an enormous amount rides on the ability to do
the mappings. And this is where the wheels so often fall off. Statistics education spends little time
on developing the mappings. We must take more cognisance of the fact that the getting from the
first stirrings of a practical problem to something like y = 87 x + &, the point at which the theory
of analysis typically kicks in, does not involve driving blithely across some small crack in the road,
but rather it involves the perilous crossing of a yawning chasm down which countless investigations
and analyses plummet to be lost without trace.

For successful problem solving, statistical thinking is not a separable entity. There is only holistic
thinking that can and should be informed by statistical elements. The more relevant knowledge one
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| MEASUREMENT I

(Including Classification)

Identify Key Characteristics

What features of the system are you interested in?
For each feature:
What ideas about this feature are you trying to capture?
Can you substitute something more specific?
How well does this capture the idea?
Is the idea you wish to capture by measurement inherently multidimensional
in important ways or should a single measurement do?
Do these “key characteristics” adequately capture the essence of the real system?

Decide how to measure them

Experience
in the field

A fall-back

Is there a generally accepted way of measuring this charactersitic in the field?
Is this currently accepted in the field as the best way to measure this entity?
If there is an accepted method and you want to use something else:

What is your justification?
Have others tried to measure this? How did they do it?

Are there known problems with their measure?

Can I draw on the experience of others in measuring similar charactersitics?

Anticipate problems

Validity &
reliability

Analysis

“Audience”
reaction

Practical
implement-
ation

To what extent does this measurement really capture the characteristic I want
to measure?

What are the practical implications of the extent to which it fails?

Will repeat measurements on the same units give very similar results?

Will different people making such measurements obtain very similar results?
Will different measuring instruments give very similar results?

If not, what impact will this have on the usefulness of any conclusions?

Will I be able to analyse data containing measurements like this?
Will this measure make the analysis unnecessarily difficult?
Will another choice confer greater statistical efficiency?

Will others be able to understand this measure?

Will the audience for the results accept that this is a sensible way to measure this?
Will I be able to understand the results of an analysis based on these measures?
Will I be able to communicate the results of an analysis based on these measures?

Can I implement these measures in practice on the scale needed for the study?

Is the equipment/personnel required for this measure available? affordable?

Is the measure unacceptably or unnecessarily difficult? expensive? invasive?
Are there cheaper/easier/less invasive alternatives that will serve almost as well?

People: Do these measures take account of the psychological, cultural and perceptual
differences of the people to be measured?

Can I do better?

Figure 10. Drilling down further into the “Measurement” node of “Plan”
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has and the better one can connect it, the better one can do. In many research environments, statistical
thinking is like breathing—everyone does it all the time, seldom being aware that it is happening.
Statistics, the discipline, should be teaching people to “breathe” more effectively. However, we are
dealing with complex and sophisticated thinking processes. We cannot expect, and indeed should be
highly suspicious of, what W. Edwards Deming called “instant pudding solutions”.

In Section 2, we identified several dimensions of the statistical thinking used in empirical enquiry:
(1) the investigative cycle; (2) types of thinking; (3) the interrogative cycle; and (4) dispositions (see
Fig. 1). We further discussed factors constraining the effectiveness of the thinking. Much of what
we have identified relates to general problem solving skills being applied in a statistical context.
One might think that for such skills a general thinking skills course such as those developed by de
Bono is all that is needed. According to Resnick (1987), however, there is no empirical evidence that
even these general skills are transferred to specific subject areas. She believes (p. 35) that thinking
processes should be embedded into the discipline itself because, “it provides a natural knowledge
base and environment in which to practice and develop higher order (thinking) skills as . .. one must
reason about something . .. (and) ... each discipline has characteristic ways of reasoning ....” To
carry out this embedding, we need more research into how these broad thinking skills are specifically
used in statistics.

Omnipresent variation was presented as providing an important raison d’étre for statistical thinking.
In Section 3, we took the observable reality of variation in the concrete world as a starting point and
endeavoured to cut through many of the confusions surrounding such abstract notions as “random
variation” and their application to practical problem solving.

In Section 4, we discussed some techniques people have used to improve thinking. It seems to
us that the rest of statistics can only benefit by following the lead of our colleagues in process and
organisational improvement and develop tools that help us to think about, and to think through, parts
of the statistical process that we are presently rather silent about. We can develop other forms of
statistical model, other forms of statistical theory to deal with these areas. We stress that thinking
tools are not a substitute for experience with investigation and data. Probably their most important
purpose is to help us understand our experience and extend the range of situations to which we can
apply it. But they may also re-initiate thinking that has become stalled.

As for the usefulness of the models presented, we have subsequently used this framework to
develop judgement criteria to help students interpret statistically based information such as in media
reports. We can see multiple uses even for a very simple model like the interrogative cycle (Fig.
1(c)). It could be used: to monitor thinking during problem solving; to help students become aware
of their own thinking; as a tool for evaluating student thinking; and as a reference point against
which to check learning opportunities provided to students. Do they, at least collectively, provide
good opportunities for the students to experience all of these modes?—It turns out that many of the
tasks we gave students did not! Nor did they measure up in terms of types of thinking.

Can thinking tools work? The people in process and organisational improvement and Polya and his
successors in mathematics believe so. Are they panaceas? There is nothing certain or cut-and-dried in
applied statistics. The real world is a messy, complicated place. We are reminded of David Moor~’s
distinction between mathematics and statistics, “Mathematical Theorems are true; statistical methods
are sometimes useful when used with skill.” We cannot expect more from our new tools than from
our traditional ones. Statistics is not some hiking tent that can be erected in an afternoon. It is an
enormous edifice. Most of the work in our writing and teaching, however, has gone into constructing
its upper levels. But, with advancing technology inexorably shifting the balance of human statistical
effort from processing and computation to thinking, we need to do some emergency work on the
foundations to ensure that the whole structure stands steadily on the ground.
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Résumé

Le présent article concerne les processus mentaux impliqués dans la pensée statistique prise dans un sens large, depuis
la formulation de problémes jusqu’d leur solution. Il tire ses sources de la littérature sur le sujet ainsi que d’entrevues
aupres d’étudiants et de praticiens en statistique, congues pour identifier leurs processus de raisonnement statistique. De ces
entrevues, nous avons identifié un cadre conceptuel quadridimensionel applicable a la pensée statistique dans le domaine
de la recherche empirique. Ce cadre est composé d’un cycle d’investigation, d’un cycle d’interrogation, de types de pensée
et de dispositions. Nous avons amorcé la caractérisation de ces processus par des modeles pouvant servir de base a la
création d’outils ou cadres intellectuels aidant la résolution de problemes. Des outils de ce types pourraient complémenter les
modéles mathématiques déja utilisés en analyse en plus de couvrir certains aspects de la recherche statistique que les modeles
mathématiques ne peuvent pas satisfaire, particulierement les aspects associés  la synthése des types contextuel et statistique
de compréhension. L’élément central apparaissant dans les définitions de la pensée statistique ayant fait 1’objet de publication
est celui de la “variation”. Nous discutons aussi le role de la variation dans I'approche statistique de problémes pratiques,
incluant la recherche de causes.

Discussion

T.M.F. Smith
University of Southampton, UK

The topic of this thoughtful paper is the modes of thinking that underlie efficient empirical
enquiries. The authors, henceforth WP, title the paper statistical thinking but, in fact, the topic is
much wider and embraces the thinking and learning processes that form the basis of all scientific
investigations. If throughout the paper you replace the word statistical by scientific, or more generally
systematic, then very little would have to be changed. The models represented by Fig. 1-10 remain
valid and provide an excellent framework for discussing scientific thinking. The only term that is
missing is creativity, the mode of thinking that leads to the greatest advances in science. But creativity
is impossible to teach and WP are concerned with processes that can, and should, be taught, and that
form the basis of all scientific enquiry from the most humdrum to the most creative.

A key word that is repeated throughout the paper is context. All thinking, including statistical
thinking, takes place within a context which needs to be understood by all who are conducting
the enquiry. WP make a strong case for multi-disciplinary teams who challenge assumptions, bring
different backgrounds to enquiries, and generate the synthesis of ideas that lead to understanding
and future progress. WP argue that statisticians should frequently be members of these teams, but
they include examples where conventional statistical methods, as currently taught, do not add much
value to the enquiry. T6 justify team membership, statisticians must be seen to add value that cannot
be added by scientists from other disciplines. In the examples from both students and consultants
this is not always the case. In discussing context we learn that “Of all our statisticians, however, only
the one operating in quality improvement seemed to use tools (e.g. cause and effect diagrams and
process mapping techniques) to analyse the nature of the problem itself.”” How many statisticians
have been taught to use these tools? Later on, in the discussion of causation, we find the statistician as
Cassandra, the harbinger of doom, warning that correlation does not imply causation and that results
may be meaningless if they could have arisen by chance. Statistical thinking can be very negative at
times and can stifle imaginative enquiry. Is that really our main contribution? Sometimes yes, since
there is a danger in jumping too quickly to conclusions in areas such as medicine. But this danger
may not exist in other areas and statisticians must be aware of the context in which they are operating



