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Abstract

A method for the direct use of aligned landmark data (2D or 3D coordinates of comparable points) in phylogenetic analysis is
described. The approach is based on finding, for each of the landmark points, the ancestral positions that minimize the distance
between the ancestor ⁄descendant points along the tree. Doing so amounts to maximizing the degree to which similar positions of the
landmarks in different taxa can be accounted for by common ancestry, i.e. parsimony. This method requires no transformation of
the aligned data or the results: the data themselves are the x, y, z coordinates of the landmarks, and the output of mapping a
character onto a given tree is the x, y, z coordinates for the hypothetical ancestors. In the special case of collinear points, the results
are identical to those of optimization of (continuous) additive characters.

� The Willi Hennig Society 2010.

The field of geometric morphometrics comprises a
vast array of methods to describe shape quantitatively.
Geometric morphometrics has important ramifications
for many subdisciplines of biology (morpho-functional
studies, comparative anatomy, anthropology, etc.), but
very limited interactions with phylogenetics. Many of
the methods of geometric morphometrics have been
developed by pheneticists, and perhaps (as noted by
MacLeod, 2002, p. 101) this is the reason why many
systematists tend to equate morphometrics with phenet-
ics, and many morphometricians have very little interest
in phylogeny. The purpose of this paper is to show that,
contrary to common belief, a parsimony framework can
accommodate certain types of geometric morphometric
data perfectly.

The most widely used methods in geometric morpho-
metrics are based on landmarks. Landmarks are discrete
anatomical loci that can be recognized as ‘‘the same’’ in all
specimens under study (Zelditch et al., 2004). A config-
uration is a group of landmarks chosen to represent the

shape of a particular structure. Superimposition methods
align two landmark configurations (filtering out differ-
ences due to rotation, translation and size). The differ-
ences in shape are determined from the changes in the
relative position of each individual landmark (Benson
et al., 1982; Siegel and Benson, 1982; Rohlf and Slice,
1990; Rohlf and Marcus, 1993; Slice, 1996; Rohlf, 1999;
Adams et al., 2004). This approach to comparing shapes
is appropriate for pairwise comparisons, but insufficient
for evaluating shape changes along a phylogeny—for
that, a method that explicitly evaluates change between
observed taxa and hypothetical ancestors is needed. This
paper proposes such a method, based on the parsimony
criterion, as a natural three-dimensional extension of
Farris optimization.

Description of the approach

Ancestral positions for a single landmark

The method proposed here works on specimens that
are already aligned (see Alignment for a discussion of
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alignment criteria). The position of an individual land-
mark is specified by values along two or three dimen-
sions (in contrast with the unidimensionality of a
continuous character). How to establish ancestral states
for a character that changes in three dimensions has
never been proposed. The most logical approach is to
use a 3D extension of Farris optimization, or spatial
optimization, choosing for each ancestral point the
positions that minimize the displacement D of this
landmark along all ancestor ⁄descendant pairs. Let d (p,
q) be the Euclidean distance between p and q, and b the
number of branches in the tree.1 Thus the coordinates
for the point in each ancestor have to be chosen such
that the sum D of displacements:

D ¼
Xb

n¼1
d n; ancestor nð Þ
� �

is minimum. Such a spatial optimization is perfectly
akin to standard parsimony analysis. For continuous
characters, Farris optimization (Farris, 1970; Goloboff
et al., 2006) finds the values for the ancestral nodes that
minimize ancestor ⁄descendant differences (Fig. 1a). In
two or three dimensions instead, where the position of
each point in space is defined by coordinates x, y, z, the

coordinates for ancestral points that minimize the sum
of distances between the ancestor ⁄descendant points
must be found (Fig. 1b). When the points are collinear,
and thus can be represented by a single continuous
character (Fig. 2), the spatial optimization becomes
identical to Farris optimization (both numerically and
conceptually).

For a node in the tree that connects an ancestor and two
descendants (A, B, C, already positioned), the point P (see
Fig. 1b) which minimizes the sum of distances to the
three vertices of the triangle ABC can be calculated
analytically. This point is known as the Fermat point (so
called because Fermat posed this problem as a challenge
to Torricelli, who solved it geometrically in the early
1600s) or first isogonic center (so-called because, in
triangles with all angles below 120�, —APB = —APC =
—BPC = 120�). For three points, the ‘‘tree’’ formed by
the segments AP, BP and CP is the same as the Euclidean
Steiner tree. For more than three points connected to a
single internal node (a polytomy), the point P which
minimizes the sum of distances is known as the geometric
median, and cannot be found by analytical means
(requiring heuristics).

Finding the point positions that, for a given
tree, minimize the total displacements between all
ancestor ⁄descendant points for the given landmark is

Fig. 2. A set of collinear points. In this case, landmark optimization
produces the same results as Farris optimization.

Fig. 1. Comparison between (a) Farris optimization and (b) 3D
landmark optimization. In Farris optimization, the sum of the
numerical differences between states is minimized. In landmark
optimization, the distances between landmark positions are minimized.

1the Euclidean distance between two points p, q is [(px ) qx)
2 +

(py ) qy)
2 + (pz ) qz)

2]½, which in the case of two dimensions

reduces to [(px ) qx)
2 + (py ) qy)

2]½.
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considerably more difficult than for only three nodes,
even for binary trees. Suffice it to say here that Goloboff
and Catalano (in press) have developed and incorpo-
rated into TNT (Goloboff et al., 2003, 2008) heuristic
methods (based on a Sankoff approximation as a first
step, and a final iterative refinement), which produce a
good approximation to the optimum. The problem is
related to the problem of Euclidean Steiner trees. The
tree that can optimally account for the landmark
positions will place all terminals with points in similar
positions together, and thus the sum of all ances-
tor ⁄descendant displacements in the optimal tree for the
landmark in question will be the same as the span of the
Euclidean Steiner tree for the points of the terminals.
The Euclidean Steiner tree thus provides the minimum
possible cost for a single landmark.

Ancestral landmark configurations

If the spatial optimization described above is applied
to obtain the ancestral position for each of the
landmarks in a configuration, then the ancestral
‘‘shape’’ arises as a by-product. Given that the degree
of difference between configurations is measured as the
sum of linear distances between individual landmarks,
obtaining an ancestral configuration by minimizing the
displacement of each individual landmark is formally
equivalent to calculating ancestral configurations by
choosing those that minimize the degree of difference
between ancestral–descendant configurations. Note that
this rationale used to establish ancestral landmark
configurations and quantify the differences among
hypothetical and observed landmark configurations is
identical to the rationale behind existing superimposi-
tion methods (e.g. Siegel and Benson, 1982; Rohlf and
Slice, 1990). The partial dependence that may exist
between landmarks requires special precautions when
using landmarks as data to select a phylogeny (see Tree
choice), but has no effect on the shapes resulting from
the optimization.

Note that when there is ambiguity in the ancestral
positions for several landmarks (i.e. more than one
position minimizes change at some node, which is
equivalent to ambiguous optimization and multiple most
parsimonious reconstructions in the case of discrete
characters), some of the combinations of positions may
be more defensible reconstructions of ancestral shape,
even if equally optimal according to the parsimony
criterion employed on a point-by-point basis. Consider
as an example several points along a straight line in all
observed specimens, a line that can be placed at different
heights in different species. If there is ambiguity in the
placement of the landmarks in some ancestor, with
equally optimal positions at different heights, then
placing some points at a high position and others at a
lower one will produce a less realistic shape (a zig-zag

line) than placing all points at the same height (a straight
line). The implementation in TNT considers one ‘‘land-
mark character’’ to consist of several points, with the
idea that the user can specify whether the maximum or
minimum x, y or z values should be chosen simulta-
neously for all points of the ‘‘character’’ in the case of
ambiguity. The cases where such a precaution is needed,
however, seem to be uncommon in real data sets, as
ambiguity arises very infrequently.

Tree choice

For phylogeneticists, the goal of using landmark data
will be to help resolve phylogenetic relationships, an
issue complicated by the potential dependence between
landmarks.

If all the landmarks of a configuration were com-
pletely independent, no special treatment would be
required: each of the n landmarks should first be
optimized independently, with the final score of the tree
calculated as the sum of the scores of individual
landmarks. If, instead, the dependence was complete,
this would amount to giving the configuration a weight n
times higher than deserved. Within the realm of discrete
characters, this is just like using a character for the
colour of each of the P petals of a flower—which
amounts to giving the colour of the flower a weight of P,
requiring at least P contradicting characters to not have
in the most parsimonious tree a group defined by flower
colour. But if the colour of each petal is scored with a
separate character of weight 1 ⁄P, then the sum of
weights for each character representing ‘‘flower colour’’
is effectively the same as that of the single discrete
character, and will produce the same result as consid-
ering the flower as a whole. This idea can be extended to
the case of landmarks, so that the more landmarks are
used to describe a shape, the lower the weight each
individual landmark should have.

Therefore the steps to perform a phylogenetic analysis
from aligned specimens will be (i) optimize each
landmark, finding optimal ancestral positions, (ii) cal-
culate its score, (iii) divide the score of each landmark by
the number of landmarks in the configuration, (iv) sum
the scores of each configuration (possibly taking into
account scale and ⁄or units of measurement; see Golob-
off and Catalano, in press), (v) sum this score with the
remainder of the scores of other characters to obtain the
final score of the tree.

The main problem with weighting landmarks inver-
sely to the number of landmarks in the configuration is
that the dependence between landmarks in a configura-
tion is evidently not complete, so that down-weighting
inversely to the number of landmarks would amount to
give the landmark configuration a lower weight than it
deserves. Even if perhaps making landmark characters
less influential than they should be, this still is a
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significant improvement in face of the standard
approach of not considering landmark configurations
at all, effectively giving them a weight of zero.

An example

An example of the use of spatial optimization to
choose from among trees and choose ancestral land-
mark configurations is shown in Fig. 3. In this artificial
example, taken from Naylor (1996) and MacLeod
(2002), fish shapes were ‘‘evolved’’ on a ‘‘model’’ tree.
The shapes were scanned from MacLeod (2002: p. 127,
fig. 7.11) and separated into 12 different configurations
following MacLeod (2002). For comparability with
previous analyses, the specimens were aligned under
Procrustes generalized least squares with tpsRelw
(Rohlf, 2008). To decrease the influence on tree choice
of those configurations represented by many landmarks,
configurations were down-weighted in inverse propor-
tion to the number of landmarks. Landmark rescaling
and optimization was performed as described by

Goloboff and Catalano (in press). Searches were done
with TNT, using multiple random trees as starting
points for tree bisection–reconnection (TBR). Each of
the starting points recovered the same optimal tree,
identical to the model tree (Fig. 3). In addition, mapping
the landmarks onto the optimal tree correctly recovers
the changes in landmark positions and thus the syna-
pomorphies—the derived positions of each landmark on
a given node.

Alignment

The method described in this paper assumes that the
specimens are already aligned. For the alignment, it is
advisable to use a method in line with the criterion used
to establish ancestral landmark positions—a method
that minimizes the sum of the linear distances. Several
existing methods for alignment are based on approxi-
mate solutions to this problem. Larsen (2008), for
instance, proposed a method that approximates an
alignment based on Euclidean distances by averaging

Fig. 3. Ancestral landmark configurations obtained using the spatial optimization for two characters derived from Naylor (1996) and MacLeod
(2002). The arrows indicate tree nodes with a landmark displacement relative to their ancestor, i.e. synapomorphies.
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the Manhattan distance of a series of coordinate systems
with equal angular rotation. Other methods, such as the
resistant fit theta-rho analysis (RFTRA; Siegel and
Benson, 1982; Rohlf and Slice, 1990; Slice, 1996), also
produce alignments much more similar to those pro-
duced by minimizing the linear distances than those
produced by the least-squares criterion. Both methods
have additional advantages over least-squares fitting.
Least-squares fitting may result in a misleading repre-
sentation of shape differences (differing more from
biological expectation) when one or a few of the
landmarks exhibit extreme displacements relative to
the others in the configuration (Siegel and Benson, 1982;
Rohlf and Slice, 1990; Slice, 1996; Larsen, 2008).
Although an alignment based on minimizing linear
Euclidean distances will generally be the best method, it
is possible that in some circumstances a two-point
registration alignment (Bookstein, 1982, 1991) might be
preferable.

The example of Fig. 4 (inspired by the example of
Larsen, 2008, fig. 5) shows the effect of the alignment in
the representation of change along a tree. In Fig. 4a the
configurations were superimposed using RFTRA, while
in Fig. 4b they were superimposed using least-squares.2

In both cases, changes onto the tree were inferred by
spatial optimization. As expected, the alignment
strongly affects the distribution of inferred changes.
For the least-squares alignment, the inferred changes
were spread over all the landmarks, but for RFTRA all

the changes were inferred to occur in the thumb—the
only moving digit. It is already known that the use of
least-squares alignment is defensible under some cir-
cumstances, for example when all the shapes are
expected to be identical, with the differences in land-
mark position resulting from measurement errors. Since
these errors are likely to be evenly spread among
different landmarks, it makes sense to use a method of
alignment—like least-squares—which will uniformize
the displacement among all landmarks. This situation
is precisely the opposite of what is expected of landmark
data to be used for phylogenetic inference—so it is
doubtful that least-squares alignments will ever be
desirable for phylogenetic analyses.

As is known (e.g. Benson et al., 1982), superimposi-
tion methods in general have limitations in the accuracy
with which minor details can be considered. For
example, in Fig. 4 the different positions that the
landmarks of the thumb can take are restricted to a
circular trajectory, but superimposition methods repre-
sent change only as rectilinear displacements. Spatial
optimization succeeds in recovering the occurrence of
the movement, but not its most likely trajectory.
Eventually, one might want a modified method such
that certain regions of the space are forbidden in some
taxa and ⁄or ancestors; that would require additional
calculations, and has not yet been implemented. While
perhaps realistic, the incorporation of those prohibited
subspaces would detract from the simplicity of the
method, and at the very least should be used sparingly.

Although the method described here starts from a
multiple alignment (in the same way as all methods
proposed to date to establish phylogenetic relationships

Fig. 4. A hypothetical example showing ancestral landmark positions calculated with spatial optimization, showing the difference between
alignments produced with (a) resistant fit theta-rho analysis or (b) generalized least-squares Procrustes alignment. The changes in (b) occur at the
expected node, but are spread over all the landmarks instead of only the landmarks representing the thumb.

2Least-squares alignment was performed using tpsRelw. RFTRA

alignment was performed using a C program written by the first

author.
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from landmark data: Zelditch et al., 1995; MacLeod,
2002; Rohlf, 2002; Lockwood et al., 2004; González-José
et al., 2008), such a two-step procedure (first align, then
establish phylogenetic relationships) is probably neither
unavoidable nor the best way to analyse landmark data. It
would, in principle, be possible to analyse this type of data
without the need of a multiple alignment, just as in direct
optimization of sequence data (Wheeler, 1996). The only
difference from the method proposed here is that in a
dynamic approach, the configuration of the terminals
would also have to be rotated, translated or sized in order
to minimize the linear distances (although size changes
would have to be constrained, as otherwise the best scores
would always be obtained when shapes are shrunk
completely). The computational requirements for such a
method would be much more important than those
needed for fixed alignments and, consequently, the
method proposed in this paper can be considered as a
heuristic solution to the more general problem.

On the supposed incompatibility between morphometrics

and cladistics

The idea that morphometric characters cannot be used
in cladistic studies is rather widespread, but this stems

mostly from misconceptions of the logical basis of
phylogenetic analysis. The approach presented here is
strictly cladistic, in the sense that it evaluates trees based
on specific and complete ancestor reconstructions. As in
standard parsimony, ancestral points are chosen with the
aim of minimizing differences between ancestors and
descendants—as in additive (Farris, 1970), non-additive
(Fitch, 1971), step-matrix (Sankoff and Rousseau, 1975),
or direct optimization (Wheeler, 1996; Varón et al.,
2010).

Continuous characters and distances

Several authors (e.g. MacLeod, 2002; Adams et al.,
2004; Lockwood et al., 2004) have asserted that cladis-
tics is incapable of dealing with the continuous variation
inherent in morphogeometric data, but in fact the
specification of an ancestor may be done by assigning
a value of a continuous variable or by specification of
coordinates for landmark points, exactly as it can be
done by specifying a discrete state or a DNA sequence.
It is true that phylogeneticists have seldom used
continuous characters in practice, but this is due to
lack of implementation more than any theoretical
impossibility or incompatibility; in fact (as noted by
Goloboff et al., 2006), the first algorithm for character
optimization (Farris, 1970) was described to work on
continuous characters.

One of the proposed solutions (e.g. Lockwood et al.,
2004; Couette et al., 2005) for the supposed inability of
cladistics to deal with continuous variation is to use
pairwise distances as input. This, however, suffers from
the same problems as pointed out by Farris (1981, 1985)
and Huson and Steel (2004): the tree-scores may well
correspond to the distances between abstract, physically
unrealizable ancestors. An example (modified from
Farris, 1981) is three taxa A, B, C, and a single
landmark with coordinates A = (1,1), B = (2,1),
C = (1.5,1.866), so that the distance between any two
taxa is exactly 1 (A, B and C form an equilateral triangle
with each side of length 1). Creating a hypothetical
ancestor, H, which is connected to each of the terminals
by a branch of length 0.5, produces a perfect fit to the
data, but there is no value that the x, y coordinates
could take for the landmark in ancestor H such that the
displacement from each of the terminals is 0.5. The
length of the branches connecting A, B and C through H
is then nothing but a mathematical abstraction, with no
possible physical realization, and it is hard to see why
such a quantity is to be minimized (Farris, 1981).

Homology and ordering

Bookstein (1994) also argues for the basic incompat-
ibility between morphometrics and cladistics on several
grounds, the first of which is superficially different from

Fig. 5. The same alignment as Fig. 4a, but with ancestral landmark
positions calculated using least-squares ‘‘parsimony’’ instead of spatial
optimization. The changes are spread over all tree nodes.
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the arguments about the inability to deal with contin-
uous characters. He claims that homology is a binary,
all-or-none definition, because two features either are, or
are not, homologous. Bookstein�s characterization of
cladistics as requiring all-or-none homology assessments
is perhaps correct in the sense of all alternative states of
a character in a matrix being homologous at some level
(since they all must be transformations of some original
state),3 but certainly not at the level of homology of the
alternative conditions within a character. The evidence
for phylogenetic inference is primary homology (sensu
de Pinna, 1991), or similarities, that can both vary by
degrees and be ambiguous. Cladists have long accepted
the fact that, just as observations of relative degrees of
similarity are used to establish homology in the first
place, the same type of information can—and
should—be used to establish relative degrees of homol-
ogy within characters (Maslin, 1952; Lipscomb, 1992).
In other words, the length of a 5.5-cm-long wing is
closer to the length of a 6-cm-long wing than it is to
the length of 50-cm-wing—which provides a perfectly
logical basis for the decision of considering transforma-
tions between 5.5 and 6 cm to be less costly than
transformations between 5.5 and 50 cm. It is hard to see
how Bookstein may have overlooked the distinction,
because aside from being obvious, it is how pheneticists
had treated characters—and the way most cladists still
do. If Bookstein�s characterization were true, then
cladistic analysis of continuous (one-dimensional)
characters would simply be impossible, but parsi-
mony—as discussed above—works just the same when
the alternative conditions for ancestors consist of
continuous values instead of discrete states. At heart,
Bookstein�s claim about the reliance of cladistic analysis
on all-or-none homology assessments for the individual
states of a character is simply a different version of the
same criticism made by Lockwood, MacLeod, Adams
and their co-authors: the myth that cladistic analysis
cannot deal with continuous characters.

Another argument made by Bookstein is that ‘‘no two
changes of the �state� of shape are ever quite the same’’,
which has the implication—for cladistics—that ‘‘mor-
phometric shape variables cannot form a hierarchy’’
(Bookstein, 1994, p. 215). Bookstein�s argument is
hardly relevant for cladistic analysis, which maximizes
explanation of observed similarities, not explanation of
changes or transformations (see Farris, 1983, p. 18;
Farris, 2008, p. 829; contra Kluge and Grant, 2006). The
last of Bookstein�s arguments concerns the ‘‘shape
nonmonotonicity theorem’’, which asserts that given
several shapes, any ordering is arbitrary, because the
shapes could always be ordered in many different ways,
depending on the reference system or criteria used for

sequencing. Cladistics is the attempt to explain per-
ceived character similarities by postulating inheritance
from common ancestors, but Bookstein is discussing
whether degrees of similarity themselves can be per-
ceived non-arbitrarily. Thus Bookstein refers not so
much to cladistic analysis itself, but to the very
observations that a cladistic analysis attempts to
explain. Bookstein�s argument about the ambiguity in
state ordering applies equally well to discrete characters:
even treating a character as non-additive or ‘‘unor-
dered’’ amounts to asserting that no two states are closer
(and thus to giving all character state transformations
equal cost). Were one to consider that Bookstein�s
‘‘shape nonmonotonicity theorem’’ is an argument to
abandon phylogenetic analysis of morphometric data,
one would also have to abandon phylogenetic analysis
of discrete characters, as well as most of comparative
biology.

Multidimensionality

One of the main concerns about the use of landmark
data in cladistic analyses (Rohlf, 1998; Monteiro, 2000;
Klingenberg and Monteiro, 2005) is its multidimensio-
nality: the dimensions of the space of all possible
landmark configurations, equal to the number of
landmarks multiplied by the number of dimensions on
which the landmarks are gathered. Each point of this
space represents a different landmark configuration. Of
course, some configurations with no biologically
meaningful differences may differ only in rotation or
translation—once those differences have been sorted
out, the number of meaningfully different configurations
is reduced. It is in the process of excluding those
irrelevant differences that the ‘‘shape’’ of this multidi-
mensional space is defined. Restricted or not, these
spaces simply refer to all the possible configurations that
can be considered as different.

Such a multidimensional space is not exclusive to
landmark characters. If several continuous characters
are analysed, the space defined is also multidimensional
(with dimension equal to the number of characters):
each point of this space represents a particular combi-
nation of values for each character. Hence, prior to
spatial optimization, what precluded a cladistic treat-
ment of landmark data was the multidimensionality of
the space where each individual landmark can be
positioned (with position determined by x, y, z coordi-
nates), rather than the multidimensionality of the space
where landmark configurations are represented.

Spatial optimization differs radically from previous
methods, in that it maintains the original individuality
of the landmarks throughout the analysis. Other
approaches (e.g. those based on partial warps, Rohlf,
2002; or principal component analysis scores, González-
José et al., 2008) also start from the unavoidable step of

3Sequence optimization may not require homology even at that

level.
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first considering individual landmarks, but then differ in
using the entire configuration of landmarks as a ‘‘unit’’
that is subsequently ‘‘projected’’ along different axes of a
multidimensional space, effectively representing all the
landmarks in a configuration by a single point in a
multidimensional space. What is used for the cladistic
analysis is then ‘‘characters’’ representing the values of
the projections of this point along different axes of that
multidimensional space. The ancestors are obtained by
assigning optimal values to those ‘‘characters’’, finally
translating back from the axes of projections into the
original 3D aligned coordinates. Different methods
choose different axes of projections for the configura-
tions, but the basic idea is the same. The main problem
with that approach is that minimizing changes along
each axis of projection does not have any special
meaning in terms of the landmark positions themselves,
and consequently the ancestral values obtained for the
landmarks do not have any meaning in terms of
parsimony.

The Euclidean distance used here was also one of the
measures used in phenetic analysis (Sokal, 1961). The
crucial difference from phenetic usage is that the
Euclidean distance between taxa is a measure represent-
ing the ‘‘distance’’ between taxa in the abstract math-
ematical space defined in the ‘‘dimensions’’ of the
different characters. The Euclidean distance of spatial
optimization is, instead, the actual distance between the
landmark points in the 3D physical space4 of length,
width and height of the aligned shapes. Further, when
characters change along one dimension only (e.g.
collinear points), the Euclidean distance between points
summed across characters is exactly the same as the
Manhattan distance, as used by Farris (1970). Failing to
appreciate this difference has also been the basis for
some arguments (Bookstein, 1994; Adams and Rosen-
berg, 1998; Rohlf, 1998, 2002; Monteiro, 2000; MacLe-
od, 2002; Adams et al., 2004) about cladistic methods
being inappropriate for analysing morphogeometric
data. Rohlf (1998), for example, stated that:

‘‘Methods of statistical analysis should not give different results

dependent upon different choices of the orientation of the

reference shape. This means that the usual linear parsimony

method (Farris, 1970) should not be used to estimate ancestral

states since computations minimizing Manhattan distances are

not invariant to the effects of rotation.’’

The rotation of the reference system or the reference
shape determines different x, y, z coordinates for each

point, but both the spatial optimization as defined here
and the method of Farris (1970) are invariant to this
rotation, even when they are ‘‘Manhattan’’ in the sense
of being a sum across characters. The rotation to which
spatial optimization and the linear parsimony method of
Farris (1970) are sensitive is, instead, the ‘‘rotation’’ of
the multidimensional space represented by different
characters, but this hardly constitutes a problem for
phylogeneticists: such a space is not ‘‘rotated’’ as part of
a cladistic analysis.

Additional considerations

On the meaning of homoplasy

One property of the method presented here is that
the branch lengths along the path between two terminal
taxa (or patristic distance) may well be greater than the
observed distances, even for three-taxon problems.
Farris (1967) provided one of the earliest quantitative
definitions of homoplasy, as the departure of patristic
distances from observed distances. Under that defini-
tion, our approach implies that any three points that
are not collinear always require some ‘‘homoplasy’’,
even for only three taxa. In standard cladistics, the
internal node of three-taxon problems always can be
assigned a state such that there is no homoplasy. What
is necessarily absent from three-taxon problems, how-
ever, is not the homoplasy as the difference between
patristic and pairwise distances, but instead homoplasy
as steps beyond the minimum possible. This is in fact
an alternative—and more widely used—meaning of
homoplasy. The equivalence between the two defini-
tions of homoplasy does not hold for some types of
character. Consider three terminal taxa, each with a
different nucleotide (A, C and G) in a non-additive
character. The optimal assignment for the internal node
will be either A, C or G, any of which implies two
steps. However, any of these states implies that there is
a pair of taxa for which the patristic distance exceeds
the pairwise distance—e.g. choosing A for the internal
node, the sum of branch-lengths along the path from
the taxon with state C to the taxon with state G equals
two, while the observed distance between those two
taxa is only one. Does this imply that the tree requires
homoplasy for these three taxa? The minimum possible
among all trees is two steps, so the assignment of either
state to the internal node can be considered to imply no
homoplasy (i.e. no steps beyond the minimum possible
number of steps with which the character could have
evolved), and this is so despite the difference
between patristic and observed distances. The two
meanings become equivalent only under the type of
characters Farris (1967) was considering (binary
or additive).

4One of the reviewers stated that our distinction ‘‘is mistaken

because, following the Procrustes superimposition, landmarks are not

in a 3D physical space…the distance between landmarks is not

physically meaningful’’. We disagree, and so do Bookstein (1985) and

Rohlf and Slice (1990), who ‘‘emphasize that the distance measures

used in morphometrics should represent actual physical distances on

the objects’’ (Rohlf and Slice, 1990: 56).
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In the case of Sankoff characters, the minimum
possible steps may well be dependent on the state(s) to
be considered as possible candidates for the interior
nodes. Consider the example provided in the documen-
tation of TNT (Goloboff et al., 2003): states A, C, G
and T, with all costs defined as 10, except any changes to
or from T, defined as 6. The observed terminals have
only states A, C and G, and the minimum possible cost
in that situation depends on whether or not the
(unobserved) T is considered as a candidate for the
assignment. If T is a possible candidate, then trees with
18 steps can be obtained, but if T is not a valid
candidate, no tree can have fewer than 20 steps (we leave
it to the reader to verify that this is the case). In the
present approach, instead, any point in the 2D or 3D
space will be considered as a valid candidate for any
given internal node, so that the shortest tree (for a given
landmark) will always have a length equivalent to the
span of a Steiner tree.

Squared-changes ‘‘parsimony’’ of x, y coordinates

One of the approaches to establishing ancestral
shapes is the independent optimization, with squared-
changes parsimony, of the projections along the x, y
axes of the landmark. This is implemented in Mesquite
(Maddison and Maddison, 2009) and MorphJ (Klin-
genberg, 2008). One of the properties of the minimiza-
tion of the squared differences of x, y coordinates is that
it also minimizes the squared distances between the
landmark points themselves, making the method inde-
pendent of the system of coordinates used to indicate
landmark positions. This independence, however, is not
sufficient for a method to be without problems: squared-
changes parsimony ‘‘perversely ascribes change where
none is required and certainly does not minimize ad hoc
hypotheses of homoplasy [incorrectly implying] wide-
spread homoplasy on the cladogram’’ (Hormiga et al.,
2000, p. 444)—since it does not maximize the number of
similarities explained by common ancestry, ‘‘parsi-
mony’’ is a misnomer for this method. This problem
obviously affects the optimization of landmark coordi-
nates as well: if the method is incapable of dealing
appropriately with one-dimensional variables, it cannot
be expected to provide magically a good solution for
higher-dimensional problems. The problem of least-
squares minimization for landmark data is illustrated in
Fig. 5. While least-squares infers changes all over the
tree, spatial optimization (true parsimony) correctly
recovers all the changes as synapomorphies of the clade
A–B; the only metric that can properly evaluate the
degree to which the similarity in landmark position in
the terminals can be accounted for by common ancestry
is (as in Farris optimization) a linear distance.

The fact that the results of minimizing squared-
changes in x, y coordinates are independent of the

coordinate system does not mean that the results of
independent minimization of the linear differences—true
parsimony—along the x, y coordinates will also be
independent of the reference system; they are not (as
shown in Fig. 6). The only way to minimize displace-
ment of points changing position in a 2D or 3D space is
by explicitly considering the actual positions of the
points in 2D or 3D space—no reduction to one-
dimensional optimization is possible.

Applicability

Landmark studies typically refer to low taxonomic
levels. Just like other methods for most parsimonious
reconstructions of ancestral states, the present method
will always find some reconstruction for any data set. A
four-taxon analysis with the shapes of a beetle, a
starfish, a cow and a whale will produce some results,
but they will obviously not be very meaningful. Land-
marks are likely to carry genealogical information, and
to be strictly comparable, only for a certain degree of
phylogenetic relatedness. Likewise, the existence of a
method for cladistic analysis of landmarks does not
mean, in any way, that discrete or one-dimensional
characters lose their meaning or relevance. Spatial

(a)

(b)

Fig. 6. (a) The costs assigned to a change in position when x, y
coordinates are independently optimized are not necessarily ranked
according to the spatial distance between the points. In the example,
the cost (A–B) is lower than the cost (C–D) when the distances in space
are considered, but larger when x, y values are optimized indepen-
dently. (b) The position obtained by minimizing differences in x, y
independently does not minimize point distances.
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optimization is in no way a replacement for any of the
existing standard procedures in cladistics. As noted by
Goloboff et al. (2006, p. 600), if the observed variation
can be meaningfully partitioned in discrete states, it is
best to avoid more complex analyses like those pre-
sented here.

Conclusions

The approach presented here provides a rationale for
using morphogeometric data in phylogenetic studies.
From the phylogenetic point of view, the approach is
entirely equivalent to standard parsimony analysis: it
seeks the ancestral landmark configurations that mini-
mize point displacements between ancestral ⁄descendant
nodes along all branches of the tree. This is also
equivalent to maximizing the degree to which similar
positions of the landmark in different taxa can be
accounted for by common ancestry, i.e. parsimony.
From a morphogeometric point of view, our approach
evaluates changes of shape in the same way as all
superimposition methods do—changes between shapes
are represented by changes in the positions of individual
landmarks. Our method can be considered as an
extension of those methods to determine changes of
shape, but taking into account not only observed
shapes, but also ancestral hypothetical shapes, as
implied by phylogenetic relationships. Spatial optimiza-
tion, unlike previous methods that attempted to adapt
morphometric data to cladistic studies, requires no
transformation of the aligned data or the results: the
data themselves are the x, y, z coordinates of the
landmarks, and the output of mapping a character onto
a given tree is simply (a diagram with) the x, y, z
coordinates for the hypothetical ancestors. This sim-
plicity is in keeping with the spirit of parsimony as a
logically sound method of phylogenetic reconstruction.
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